
AALBORG UNIVERSITY · AAU
Department of Electronic Systems

Automation & Control

Robots in Everyday Human Environments
On Platform Development and Behaviour Dependent Control

Master Thesis
Simon Kracht
Carsten Nielsen

Automation & Control

Fredrik Bajers Vej 7C
DK-9220 Aalborg Ø
Phone.: +45 9635 8600
Web: http://www.control.aau.dk

TITLE:

Robots in Everyday Human Environments

- On Platform Development and Behaviour Dependent Control

SPECIALIZATION:

Intelligent Autonomous Systems

PROJECT PERIOD:

9th and 10th semester

2 September 2006 - 7 June 2007

PROJECT GROUP: 1030

GROUP MEMBERS:

Simon Kracht

Carsten Nielsen

SUPERVISORS:

Thomas Bak

Hans Jørgen Andersen

NUMBER PRINTED: 7

NUMBER OF PAGES: 130

ANNEXES: 9 on DVD

FINISHED: 7 June 2007

ABSTRACT:

This thesis concerns the development of an
autonomous mobile robot intended for use
in a human environment. From a primary
focus on HRI, a novel robotic behaviour al-
gorithm has been developed and validated
through simulation as well as real world ex-
periments. Furthermore, the behaviour of
the robot is continuously adjusted to that of
encountered people, by incorporating CBR
based artificial intelligence, implemented by
use of a MySQL database.
Besides interacting with people, the robot
is capable of navigating and localizing itself
in a given environment while avoiding un-
known obstacles.
All robot software, including the implemen-
tation of the above algorithm, has been de-
veloped for use with the Player robot soft-
ware framework, and implemented on a
FESTO Robotino®. Consequently, due to
the Player framework offering a wide range
of robot features, the developed system can
form the basis of future robotic research.
Experiments performed on the robot show
promising results, in relation to both the
behavioural capabilities and the developed
system in general.

Preface

Targeting the issue of introducing robots in everyday human environments, this

thesis documents the work of a master project on the specialization of Intelligent

Autonomous Systems at the Section of Automation and Control, Aalborg Univer-

sity.

At present, the work conducted throughout this project is the primary part of

the research conducted in cognitive robotics at Aalborg University. Furthermore,

the part concerning behavioural human-aware robot control is at the forefront of

the research in Human Robot Interaction in general.

Throughout the project period, the authors have made extensive use of the

open source Player software robot framework, on which the developed solu-

tion is based. Furthermore, the free Unified Modelling Language (UML) toolbox

BOUML developed by Bruno Pagès has been a valuable tool in the entire design

process, while MATLAB© has provided much value in developing algorithms and

illustrating the results of conducted experiments.

The thesis is intended for supervisors, examiner, students and others that might

have interest in behavioural control of mobile robots.

Aalborg University, 2007

Simon Kracht Carsten Nielsen

II

Reading instructions

References to literature are done by the Harvard method, where possible specific pages

are added, e.g. figures, equations, and tables are numbered consecutively within each

chapter. References to equations are in addition made in parenthesis e.g. (3.1). Acronyms

are written in full length at first use and listed on page 112.

Matrices are written with bold upper-case letters e.g. A, vectors with bold lower-case

letters e.g. a, while references to variables in source code are written as e.g. foo.

Furthermore, references will appear to a project Wiki:

http://www.control.aau.dk/˜tb/wiki

References to annexes on the enclosed DVD, is done by e.g. Annex 1.

The DVD contains source code, videos, data sheets, etc.

http://www.control.aau.dk/~tb/wiki
http://www.control.aau.dk/~tb/wiki

Contents

1 Introduction 1

1.1 Robotic context . 3

1.2 Project objectives . 4

1.2.1 Experimental set-up . 5

1.3 Contributions . 7

1.4 Outline . 10

2 Analysis 11

2.1 Robot platform . 11

2.1.1 FESTO Robotino® . 11

2.1.2 Range sensors . 13

2.2 Software framework . 14

2.2.1 Player robot server . 14

2.2.2 Stage simulator . 16

2.3 Required robot functionalities . 17

2.3.1 Localizer . 18

2.3.2 Pilot . 24

2.3.3 Navigator . 26

2.3.4 Person Detector . 29

2.3.5 Person Evaluator and Trainee . 31

2.3.6 Communicator . 35

2.3.7 Behaviour . 36

2.4 Controller . 40

2.4.1 Controller objectives . 40

2.5 Software structure . 43

3 Design and Implementation 45

3.1 Player driver architecture . 45

3.2 Robot interface . 46

3.2.1 RTLinux module . 46

3.2.2 Robot driver for Player . 47

3.2.3 URG driver for Player . 48

IV Contents

3.3 Robot control . 49

3.3.1 Behaviour Manager . 49

3.3.2 Velocity Manager . 59

3.4 Human-Robot Interaction . 60

3.4.1 Person Detector . 60

3.4.2 Person Evaluator . 65

3.4.3 Trainee . 67

3.5 Controller . 77

3.5.1 Controller development . 77

3.5.2 Player client . 77

3.5.3 State supervision . 79

3.5.4 Controller structure . 81

4 Experiments and Results 87

4.1 Data acquisition . 87

4.1.1 Person test subject . 88

4.2 Before encounter . 89

4.2.1 Results from simulation . 89

4.2.2 Results from real-world test . 92

4.3 During encounter . 92

4.3.1 Human-aware navigation . 93

4.3.2 Learning . 99

4.4 After encounter . 106

4.4.1 Results from simulation . 106

4.4.2 Results from real-world test . 107

5 Closure 109

5.1 Conclusion . 109

5.2 Future Work . 110

Acronyms 112

Bibliography 112

Contents V

A Framework comparison 118

B RobotinoCom API 120

C Interface specifications 122

Annex 1 Source code incl. documentation (Player) drivers DVD

Annex 2 Source code incl. documentation (Controller) DVD

Annex 3 Source code incl. documentation (RTLinux) module DVD

Annex 4 Stage files DVD

Annex 5 Camera calibration data and files DVD

Annex 6 Backup of Robotino® CF-card DVD

Annex 7 Data from experiments DVD

Annex 8 Videos from experiments DVD

Annex 9 Data sheets DVD

Annex 9A PBS-03JN

Annex 9B URG-04LX

CHAPTER 1

Introduction

Since the first industrial robot began its work at the Ford factories in 1959, research in

robot technology has been performed intensively. The original focus of robotics research

was certain human jobs involving repetitive tasks, identified as being well suited for

industrial robots. Later on, the use of robots evolved as they became increasingly capable

of performing more varied tasks, e.g. by the use of tele-operation allowing for human

control of the robot.

Through the years, the focus of the robotics research has gradually broadened, and

now covers not only industrial applications but also a wide range of other purposes. By

moving from industrial repetitive tasks to more autonomous tasks, further interaction

between robots and users has received increased attention. Thus, the Danish council

for Technological Foresight under the Ministry of Science and Technology, has investi-

gated the innovation possibilities related to robot technology in a report on Cognition

and Robotics published in April, 2006 [The Danish Ministry of Science and Innovation,

2006]. Cognition stems from the Latin “cognoscere”, which means to know, to recognize,

to understand.

The report concludes, that the development of robots capable of carrying out more

and more advanced cognitive demanding tasks, possesses “a great potential for alleviating

critical problems and promoting innovation in areas important to the society”. These areas are;

Industry, Agriculture, Experiences - play and learning, Service and care, and finally Hos-

pitals and health. The common goal is an advanced robot, capable of participating in the

everyday human life.

A good example of such development of robots with autonomous capabilities, is the

present possibility for regular consumers to purchase a robot vacuum cleaner as e.g. an

iRobot Roomba® at an affordable price.

Robots participating in the everyday life is a main part of the focus in the challenging

research field of Human Robot Interaction (HRI), being at the intersection of other re-

search fields ranging from psychology and social sciences to artificial intelligence, com-

puter science, robotics etc. [Dautenhahn, 2007].

For a robot to navigate in a human environment, being highly dynamic and cluttered,

requires a high degree of automaticity, as opposed to industrial robots for which the en-

vironment is static and known. Furthermore, the robot must be capable of both receiving

signals by which humans interact and responding to these. Conducted research in the

field of HRI has spawned a variety of robots targeted at different application domains

2

ranging from museum and home tour guides [Kleinehagenbrock et al., 2004; Burgard

et al., 1999] to various different service robots as e.g. the Care-O-Bot [Frauenhofer, 2004].

Probably the most renown result of these new kinds of human interactive robots is the

Honda Asimo robot [HONDA, 2006].

At the Section of Automation and Control (SAC) at Aalborg University, research has

been conducted in various parts of the robotics field such as development of autonomous

control for helicopters, coordination of multiple autonomous robots and establishment

of a humanoid robotic platform, intended for research in helping people with walking

disabilities.

SAC has an interest in broadening the robotics research to embody elements of HRI

and cognitive abilities. Postulating, that the primary criteria of success in obtaining re-

warding interaction between human and robot, is the initial encounter between man and

machine, it is of utmost importance to make this initial event as smooth and human-

friendly as possible.

However, obtaining such a setting is still an open question in the research commu-

nity. Hence, some researchers, that in order to establish the best possible foundation for

a successful HRI solution, the given robot should be as human-like as possible, in terms

of appearance as well as behaviour [Breazeal, 2002]. Contrary to this, other researchers

argue that human-beings in general behave socially towards artifacts, and thus research

should be concentrated on investigating those situations where this natural human abil-

ity is somehow disturbed [Dautenhahn, 2007].

This project is concentrated on the findings of [Butler and Agah, 2001], where the ef-

fect of different types of robot appearance and behaviour on human beings have been

studied. Thus, the aim is to develop a robot with an appearance and behaviour proven

to be valuable in the effort of establishing as pleasant a setting as possible. Thus, a new

hardware platform (a FESTO Robotino®) has been acquired, featuring an omnidirectional

drive, nine IR sensors, a bumper, a camera, and an additional range finder. Furthermore,

is has been a desire to implement a robot software framework acclaimed by other re-

searchers throughout the robot research community. Referring to framework the compar-

ison presented in Appendix A, the open-source Player project [Collet et al., 2005] has been

identified as the best choice. Based on a server/client principle, this robot interface al-

lows for multiple instances of possibly different programming languages, to access robot

hardware through predefined interfaces. Finally, many researchers have contributed to

Player with various drivers covering everything from specific hardware, to outright nav-

igation modules.

Chapter 1. Introduction 3

The long term objective of the research is a social assistive robot, capable of smooth

interaction with people around it. Moreover, the robot should be able to extract features

from these encounters and to learn from them, in the sense that the robot continuously

becomes more aware of the people it approaches, and utilizes this knowledge to improve

its integration in the environment. Applying such capabilities to the robot, would enable

it to operate in a variety of applications.

1.1 Robotic context

With the above overall long term objective in mind, this thesis focuses on developing a

robotic control system, which takes into account behavioural features of both the robot

and encountered humans. By extending the Robotino® platform, it is made the foun-

dation of a software framework offering improved HRI capabilities in terms of robot

navigation.

According to [Isaacs and Walendowski, 2001], the process of designing such useful

and usable technology, starts from a description of the fundamental relationship between

user and technology. A relationship described with the analogy of a butler and his/her

employer. Thus, a butler must always be prepared to assist his/her employer, and if

in doubt of the task to perform or if problems should arise, the butler will ask as few

and as relevant questions as possible. Furthermore, the butler does not ask how he can

be at service, but instead figures out how his employer uses him, and thus develops

a way to anticipate certain calls for service. In the same way, the employer gradually

develops an idea of which tasks the butler performs well, and furthermore how he should

be addressed in order for the employer to obtain what is wanted.

Developing technology able to enter into such a collaboration with its user, must ac-

cording to [Isaacs and Walendowski, 2001] be governed by the rules of “negative and

positive politeness”. In short, new technology should at a minimum obey the rule of

negative politeness, which basically means that the technology must not be rude to the

user, by offering too many options, features, questions etc. For a technology to obey the

rule of positive politeness, it must be able to collaborate with its user, in offering only rel-

evant questions in an easy understandable way. Furthermore, abilities such as problem

solving, error prevention and task prediction characterizes positive polite technologies.

With the above butler analogy in mind, a case has been set up as the foundation for

this project and illustrated in Figure 1.1.

Imagine a person entering the foyer in search for room number 5. The person does

4 1.2. Project objectives

Entrance

Elevator

Room 1 Room 5

Room 3 Room 4

Goal

Robot

Robot path

Person 2

Person 1

Building overview

Foyer

Hallway

FIGURE 1.1: Fictitious scenario for identifying sub-objectives.

not know where to find the room, and might then act in several ways by e.g. going to the

building overview or wander randomly around the foyer looking for the room. In the

first case, the robot should not approach the person since the person will most likely find

the way to the room by looking at the building overview. In the latter case however, the

robot should approach the person and ask if any help is needed. If so, the person tells the

robot where he/she wants to go. The robot then guides the person to the desired location

and returns to the foyer. Upon every encounter with a person, the robot must evaluate

the outcome of the interaction and adapt any similar future interaction based on the such

previous experiences. By example, if the robot has approached persons in the vicinity of

the elevator a number of times and each time the person has refused help from the robot,

the robot must learn to approach people at the elevator less frequently.

1.2 Project objectives

From the above robotic context description based on the long term research objective, the

following objective for this particular project can be formulated.

A FESTO Robotino® equipped with a range finder, capable of conducting de-

tection of and behaviour based interaction with people, while navigating in a

Chapter 1. Introduction 5

dynamic human environment. Furthermore, the robot is capable of learning

from the various encounters, in order to constantly improve its knowledge

of the behavioural characteristics of the people in its surroundings. All com-

munication between software and robot hardware, is conducted through a

Player server.

Having outlined the overall project objective, the following section starts from a def-

inition of the test environment, and furthermore outlines the functionalities needed for

the robot to fulfil the objective stated above.

1.2.1 Experimental set-up

The environment in which the robot is to be functioning is illustrated in Figure 1.2.

4.1m

4
.9
m

1
.6
m

0
.6
m

0.6m

1
.8
m

1.2m

0.8m

0.6m

0
.8
m

FIGURE 1.2: Illustration of the test environment, in which the robot is to be

functioning. The colour of the walls of the environment should be easily

distinguished from that of a person entering.

As denoted on the figure, the environment consists of a single room measuring 4.9x4.1

meters. The following restrictions governs the environment:

• No obstacles are present in the room.

6 1.2. Project objectives

• Only one person can enter at a time.

Obviously, the described environment is only a limited reflection of a real world

crowded lobby, with people passing through on a daily basis. On the contrary, the test

environment described is set up as the simplest environmental realization of such a lobby,

still allowing for conducting satisfactorily experiments on the final robot solution.

In order for the robot to interact with a person in the room, the following functionali-

ties should be developed. Notice, that the functionalities listed are intended as extensions

on top of basic features provided by the Robotino® as e.g. robot mobility, network con-

nection etc.

Navigator The robot must be able to navigate from one point to another, whether guid-

ing a person to a zone or when moving from one point to another in the envi-

ronment. Exactly as a GPS car navigation system tells the driver where to go, the

Navigator tells the robot where to move. This implies that the Navigator must

somehow know the environment in which the robot is moving, obtained by pro-

viding it a map of the above described test-environment.

Pilot When instructed to go to a certain destination by the Navigator, the robot Pilot is

responsible for the essential robot movement. Thus, the primary objective for the

Pilot is to avoid previously unknown obstacles encountered by the robot.

Localizer Due to the robot’s intended function as a guidance robot it must constantly

be aware of its own location in the environment, in order to guide people to their

desired locations.

Person Detector When moving around in a given environment, the robot must be able

to detect persons in its surroundings in order to evaluate their behaviour, and pos-

sibly initiate interaction.

Person Evaluator As described above, the robot must evaluate a detected person to

determine certain behavioural characteristics. Recording these characteristics is

tightly connected to the functioning of the Trainee functionality described below.

Trainee Upon every human encounter, the robot must posses the ability store and as-

sociate the Person Evaluator characteristics with the fact of whether the person is

interested in assistance from the robot or not. Consequently, the Trainee function-

ality allows for the robot to be gradually taught the behaviour of the people in

the environment, and thus to get increasingly better at judging whether interaction

should be attempted or not.

Communicator Determined that a person is interested in interaction, the robot must be

able to initiate a conversation, i.e. to pose questions and receive replies.

Chapter 1. Introduction 7

Behaviour As indicated in the introduction, behavioural control of the robot is an ex-

tremely important part of HRI, being one of the primary causes for a successful

human encounter. Thus, to increase chances of successful human encounters, it

is necessary that the behaviour of the robot signals courtesy towards encountered

people. Lack of such human-friendly behavioural control, might indeed impose

unease or even intimidation on people interacting with the robot. Furthermore,

safety conditions must be taken into consideration, such that the robot does not get

too close to people, or drive too fast when at close range.

Since this project focuses on the behavioural dependent control of the robot, some

functionalities are identified as being of higher priority in in relation to the main objective.

These are the Person Evaluator, Trainee and Behaviour. Thus, the crucial navigational

functionalities of the Localizer, Navigator and Pilot will be based on existing solutions.

Thus, from the above introduction and description of the test environment, the follow-

ing outlines the contributions to the HRI research, obtained through the work described

in this thesis.

1.3 Contributions

The primary contribution from this project, is an algorithm providing robot control abili-

ties, allowing for human encountering while obeying a set of rules obtained from human-

robot studies [Butler and Agah, 2001] [Koay et al., 2006]. Furthermore, additional robot

features have been developed, enabling the robot to judge and remember the interest of

encountered people, based on a variety of situational specific parameters. Such knowl-

edge of past experiences, allows for a gradually improving robot behaviour in terms of

minimum unnecessary disturbance of detected people. The algorithm has been imple-

mented as a Player driver, allowing for swift integration with any given Player compatible

robot supporting the interfaces used.

The work conducted in order to reach the primary contribution described above, has

spawned a variety of sub-contributions.

Firstly, through the use of the Player framework, Robotino® and range finder Player

drivers have been developed in order to make the robotic platform capable of running a

fully functioning Player server. Both drivers have been submitted to the Player commu-

nity, for inclusion in the framework source.

Furthermore, a Wiki has been developed concurrently with the project solution, pro-

viding more detailed information on practical issues concerning the Robotino® platform,

http://www.control.aau.dk/~tb/wiki

8 1.3. Contributions

e.g. preparation and installation of Player.

To enable the robot with HRI capabilities, a robotic behaviour algorithm has been

developed, extending present research in HRI [Sisbot et al., 2006]. This algorithm has

been implemented as a Player driver allowing for other researchers to apply the algorithm

on their respective robotic platforms, provided that they are compatible with the Player

framework.

Chapter 1. Introduction 9

Lastly, Case-Based Reasoning (CBR) has been introduced in the HRI design, allowing

the robot to act on the basis of past encounters, thus strengthening the possibility of a

smooth introduction of a robot in a human environment.

The above mentioned contributions can be summarized as below, including other mi-

nor by-products of the development:

Robot interface

• Fully functioning Robotino® and range finder Player drivers.

• Fully functioning Player server installed on the Robotino®.

Robot control

• Robotic behaviour algorithm implemented as a Player driver.

• Navigator, Pilot, and Localizer for Robotino®. These will all be imple-

mented on the basis of existing solutions available in Player

Robot interaction

• Person Detector.

• Person Evaluator.

• Trainee based on the principle of CBR.

• Communicator.

10 1.4. Outline

1.4 Outline

Below, the remaining chapters of the thesis are listed and briefly summarized.

Chapter 2 Analysis

Starting from a description of the FESTO Robotino® hardware platform along with

the external range finder used, the Analysis also treats the Player/Stage framework

to be applied on the robot. The remainder of the chapter covers the different

functionalities judged to be necessary for the robot to fulfil the overall objective.

Finally, an overview of the proposed system structure is presented.

Chapter 3 Design and Implementation

The Design and Implementation chapter presents a more thorough description of

important issues related to the process of implementing the conceptual system

solution of the Analysis.

Chapter 4 Experiments and Results

The Experiments and Results chapter embodies all experiments conducted in

order to verify that the final system solution fulfils the stated demands. Thus,

the functioning of all primary robot functionalities will, directly or indirectly, be

documented in this chapter.

Chapter 5 Closure

Puts into perspective the findings of the Experiments and Results chapter, and

concludes on the overall project solution.

CHAPTER 2

Analysis

Based on the above introduction, a system structure providing the Robotino® with func-

tionalities, spanning from basic mobility to more advanced behavioural control is re-

quired.

Furthermore, the Robotino® platform is described, highlighting the need for both ad-

ditions and modifications to be made. These alterations concern both hardware and soft-

ware.

The analysis of the software to be developed is done by using UML use-cases which

are presented in introductory of each section concerning software related analysis.

2.1 Robot platform

This section describes the Robotino® platform in terms of technical specifications, and es-

tablishes an overview of the features provided. Furthermore, additional sensors needed

to make the Robotino® capable of the functionalities described in Section 1.2 are treated.

2.1.1 FESTO Robotino®

In Table 2.1 the technical specifications of the Robotino® are listed, and in Figure 2.1 the

robot is depicted from below along with indications on sensor and motor placements.

The three omnidirectional drive units of the Robotino®, defines the robot as being

holonomic, meaning that the controllable degrees of freedom equals the total degrees

of freedom of the robot. Powered by Dunker DC motors equipped with optical shaft

encoders the Robotino® can reach speeds of up to 10 km
h . Furthermore, interchangeable

pinions allow for custom gearing from 1:4 to 1:16.

For the Robotino® to provide the functionalities described in Section 1.2.1, the sensors

currently found on the Robotino® are not sufficient. Primarily, this discrepancy is found

in the lacking possibility of the Robotino® to measure distances beyond 30 cm which is

not sufficient for self-localization as described later in Section 2.3.1. This results in the

need for applying an additional range sensor.

12 2.1. Robot platform

Robot:

Diameter of 370 mm

Height including housing without webcam of 210 mm

Three omnidirectional drive units each featuring a 3600 rpm Dunker motor

Overall weight of about 11 kg

Maximal payload of about 5 kg

Sensors:

Nine SHARP GP2D120 distance sensors

Analogue inductive sensor

Bumper with integrated sensor

Two optical sensors

Creative Live! colour webcam with USB interface

Three optical shaft encoders

Embedded controller:

PC104 MOPSlcdVE processor of 300 MHz

SDRAM 64 MB

Compact flash card (128 MB) with C++ libraries for accessing the Robotino®

Wireless LAN interface board

Interfaces: Ethernet, 2 x USB, 2 x RS-232, Keyboard and mouse, parallel port

I/O interface card:

outputs for controlling the three omnidirectional drive units

10 analogous inputs (0− 10 V, 50 Hz)

Two analogous outputs

16 digital inputs (can be switched to outputs)

Three relays

TABLE 2.1: Technical specification of the FESTO Robotino® hardware

platform.

Robotino® software

Bundled with the Robotino® platform, FESTO provides an Application Programming

Interface (API) called RobotinoCom offering the functions listed in Appendix B.

The operating system of the Robotino® is divided into two layers, being a regular

Linux layer and a Real Time Linux (RTLinux) layer. All hardware access goes through the

RTLinux layer, while the Linux layer provides standard user space. Thus, RobotinoCom

Chapter 2. Analysis 13

IR7

IR6

IR8

M3

IR9 IR1 IR2

M1

IR3

IR4

M1

IR5

FIGURE 2.1: Bottom view of the Robotino® where IR-sensors are indicated

by “IR#” and motors by “M#”.

only supports interfacing of a limited number of additional FESTO sensors, since these

are provided for in the RTLinux implementation. Therefore, in order to make the of an

additional range sensor, measures must be taken to access the sensor through the RTLinux

layer.

Such RTLinux integration is documented in Section 3.2.1, whereas the following sec-

tion describes the additional range sensor used.

2.1.2 Range sensors

As described in Section 2.1.1, an additional range sensor is needed for the Robotino®

to function as intended. At SAC, two range sensors have been available for use in this

project. These are a PBS-03JN and a URG-04LX, both manufactured by Hokuyo. Due

to the future perspective of the use of the Robotino® at SAC, Player drivers have been

developed, making the use of both range sensors possible. Thus, the URG-04LX driver,

already provided through Player, has been modified to be compatible with the Robotino®

RTLinux solution, while the PBS-03JN driver, on the basis of prior development [Mathi-

asen et al., 2006], has been developed to support both regular and RTLinux enabled use.

The general PBS-03JN driver has been submitted to the Player community.

However, for the use of this particular project, the URG-04LX has been chosen due

to its superior specifications compared to the PBS-03JN (data sheets for both sensors are

14 2.2. Software framework

found in Annex 9A and 9B, respectively. Hence, only the URG-04LX will be treated fur-

ther, whereas details on the Player driver developed for the PBS-03JN sensor are found at

the project Wiki.

Hokuyo URG-04LX

The Hokuyo URG-04LX is a scanning laser range finder developed for robotics applica-

tions. Selected performance specifications of the sensor is found in Table 2.2.

Property Value

Distance range 0.2 - 4 m

Distance resolution 1 mm

Distance accuracy ±0.01 m within 1m

±1% otherwise

Angular range 240 ◦

Angular resolution 0.36 ◦

Power source 5 VDC

Interface RS-232

TABLE 2.2: Specifications of the Hokuyo URG-04LX range finder.

The development of the Player driver for the URG-04LX is described in Section 3.2.3.

2.2 Software framework

As described in the introduction this project utilizes Player in interfacing the Robotino®

robot. This entails, that the design of system solution is governed by the concepts uti-

lized by the Player robot interface. To provide a comprehension of this interface, this

section explains the basic concepts of the Player interface along with the Stage simulation

software.

2.2.1 Player robot server

Player can essentially be described from three key concepts being [PlayerProject, 2006,

Tutorials part]:

Interface: A specification of how to interact with a certain class of robotic

sensors, actuators, or algorithms. The interface defines the syntax and

http://www.control.aau.dk/~tb/wiki

Chapter 2. Analysis 15

semantics of all messages that can be exchanged with entities in the

same class.
Driver: A piece of software (usually written in C++) that talks to a robotic

sensor, actuator, or algorithm, and translates its inputs and outputs

to conform to one or more interfaces. The driver’s job is to hide the

specifics of any given entity by making it appear to be the same as any

other entity in its class.
Device: A driver bound to an interface, and given a fully-qualified address.

All messaging in Player occurs among devices, via interfaces.

Player is implemented as one or multiple servers providing client access to the robot

hardware through e.g. a TCP/IP connection. See Figure 2.2 for an example of a system

set-up.

Client(s)

Robot

Sensors

Drivers

Player server(s)

Actuators

Devices

PC

TCP/IP connection(s)

Interfaces

FIGURE 2.2: The architecture of the Player software.

Implementing the robot interface in this way has a number of advantages:

• The client software can be written in any language that supports the use of TCP

sockets and having any structure the designer desires.
• Any number of clients can access the interfaces provided by the robot. Thus, one

client can take care of navigation while another client processes e.g. data from a

camera.
• Software developed for one particular robot can be reused for any robot providing

similar interfaces.

16 2.2. Software framework

• Simulating the robot control software can be done using the Stage simulator as

described later in Section 2.2.2.

A robot device is implemented in Player by writing a configuration file containing

linked drivers and interfaces complying with the hardware configuration of the given

robot. Since no Robotino® driver is included in Player, new drivers has been be developed

as described in Section 3.2.2. However, no new interfaces are needed, since the interfaces

bundled with Player already support robot control (position2d), reading of IR sensors

(ir), camera (camera) and bumper (bumper). Furthermore, the use of a range finder is

supported through an interface for laser range finders (laser).

Due to the RobotinoCom API enabling control of motors and reading of sensors, the

task of writing a Robotino® driver, is essentially a task of interlacing the Player driver

structure with the desired API functions.

2.2.2 Stage simulator

Stage is the simulator part of Player/Stage providing the possibility of simulating robots,

sensors, and objects in a two dimensional virtual environment, and furthermore to exper-

iment with regular Player drivers. This is particularly useful when testing e.g. robot con-

trol algorithms, since the most widely used robot hardware and sensors are supported.

A screenshot of the Stage window is seen in Figure 2.3.

When a specific piece of hardware is to be modelled, the parameters of a matching

basic model is altered to represent the properties of the actual hardware (e.g. size and

mobility characteristics). This specification is done through .inc files. Hereafter, control

algorithms can be applied as if the hardware were indeed present. By using the Player

plug-in libstageplugin, it is possible to access simulated devices as if they were normal

Player devices.

The virtual environment (in Stage denoted “world”) in which to perform the simula-

tion is specified through a .world file. In this file, details of the environment are speci-

fied, such as which map is used to define the environment structure, and which models

should be present at which initial positions.

When a Player device has been set up in Stage, the interfaces which the device provides

can be accessed using the playerv or playernav utilities. playerv is a GUI client used

to monitor the data flow from specific devices, e.g. to view the velocity of a robot or

the distance measurements made by a range sensor. Furthermore, for some devices it is

possible to provide commands as e.g. velocity input to a robot. The playernav utility is

Chapter 2. Analysis 17

also a GUI client, however targeted on localisation and path planning features.

FIGURE 2.3: Screenshot from the Stage simulator. The simulated robot (grey

object) is equipped with a laser range finder for range measuring, blob

finder for colour tracking, and IR sensors for close range detection. The

red object represents a person.

2.3 Required robot functionalities

This section treats the analysis of the robot functionalities as outlined in Section 1.2 to be

necessary for fulfilling the project objective. The chapter starts from describing the robot

controlling functionalities of the Localizer, Pilot and Navigator, while the remaining sec-

tions treat the interactive functionalities of the Person Detector, Person Evaluator, Trainee,

Communicator and Behaviour. Finally, the development of a Controller interconnecting

all the above functionalities is proposed.

18 2.3. Required robot functionalities

2.3.1 Localizer

As described in Section 1.2 the robot must be able to localize itself in relation to a prede-

fined map of the environment, as also indicated in the use-case diagram of Figure 2.4.

Localizer

Estimate pose of robot

Person Detector

Range finder

Map

FIGURE 2.4: Use-case diagram of the Localizer functionality, which

estimates the pose of the robot from received range finder readings and a

provided map of the given environment.

This section introduces the necessary notions used in relation to localization. Further-

more, an existing Player driver intended for localization of mobile robots is described.

Since the Robotino® is to be used in a hybrid reactive/deliberative manner, it must

be able to navigate in a known environment and at the same time avoid previously un-

known obstacles.

A straightforward way, is to keep track of the robot’s movements by simply using in-

tegrated velocity data (known as odometry) supplied by the Robotino® driver. However,

such an approach is unreliable due to position errors continuously being accumulated.

Hence, a method in which the odometry data is supplemented by other sensory informa-

tion is needed.

The most extensive alternative would be to make the robot capable of drawing the

map on-line as it moves around the environment while keeping track of its position. This

method is known as Simultaneous Localization And Mapping (SLAM), and is described

in e.g. [Garulli et al., 2005]. However, as mentioned in Section 1.2, the Robotino® will be

provided with a map of the environment in which it is desired to operate, enabling the

use of an existing Player driver intended for localization.

First some necessary definitions related to task of localization are introduced:

Location The robot’s location in the two-dimensional world coordinate-system as de-

scribed on the project Wiki.

Heading The heading is the robot’s rotation relative to the world coordinate-system de-

fined by θ (refer to the project Wiki for further details).

http://www.control.aau.dk/~tb/wiki
http://www.control.aau.dk/~tb/wiki

Chapter 2. Analysis 19

Pose The robot’s pose contains both its location and heading.

Global localization Concerns the problem of turning all possible poses of the robot into

one coherent and limited set of possible poses. If the set of possible poses is di-

vided into multiple subsets (if e.g. it has been determined that the robot is located

in a corner, but the specific corner has not been identified) the global localization

problem has not been solved.

Local localization Concerns detailed tracking of the robot when global localization has

been performed.

The amcl Player driver

Player offers a driver called amcl for localization. This driver is a so-called “abstract

driver”, meaning that it uses other drivers instead of hardware as sources of data. In

this case, the amcl uses odometry data provided by the Player driver for the Robotino®

through the position2d interface and range measurements provided by the range finder

through the laser interface. The processing of the data in amcl is done using a particle

filter, which is a variant of the Bayes filter, thus utilizing a probabilistic approach to po-

sition estimation. The particle filter is also known as a Monte Carlo filter. Furthermore,

the amount of particles used by the filter is adapted dynamically to match the computa-

tionally capabilities of the system, resulting in a method known as Adaptive Monte Carlo

Localization (AMCL).

Two different outputs are available from the amcl driver. One is a representative sam-

ple of the pose hypotheses weighted by likelihood, the other is the most-likely pose hy-

pothesis. The latter is formatted according to the position2d interface, thus providing

data which can be pretended to come from a perfect odometry system. In the following,

a more detailed description is made of the AMCL method as well as the amcl driver.

The AMCL method

The AMCL method is by far the most widely used method for robot localization due to its

simplicity of implementation and applicability [Thrun et al., 2005, p. 250]. Furthermore,

compared to other Bayesian filters, which can also be used for localization purposes (e.g.

the Extended Kalman Filter (EKF)), AMCL has a number of advantages. First of all, it

takes raw sensor measurements with any noise distribution as input where, in compari-

son, the EKF assumes Gaussian noise distribution. Secondly, in contrast to the EKF, the

AMCL can be used for global localization and is robust to e.g. robot kidnapping [Thrun

20 2.3. Required robot functionalities

(a) t ≈ 10 s (b) t ≈ 20 s

(c) t ≈ 40 s (d) t ≈ 60 s

FIGURE 2.5: Illustration of the amcl driver functioning, obtained by

simulation in Stage and capturing of images by use of the playernav

utility. The estimated position is marked by the red robot, particles by a

filled red circle, and the robot by a filled black circle.

Chapter 2. Analysis 21

et al., 2005, p. 274]. However, the AMCL has one disadvantage which is the amount of

computations needed for the filter to work properly.

AMCL implementation

The overall implementation of the AMCL method in the amcl Player driver can be illus-

trated as in Figure 2.6 in which the function blocks and drivers are depicted along with

their mutual information flow.

Robotino
®

Player driver

Odometry

estimator

Map

Range finder

Player driver

Pose

measurements

Range

measurements
Laser estimator

AMCL

(Filter)
Laser model

Action model

Pose

estimate

FIGURE 2.6: The function of the amcl driver. Motion and laser

measurements are used individually to provide temporary pose estimates,

which are fused by the AMCL algorithm to provide a final pose estimate.

Starting from the left of Figure 2.6, Player drivers for the Robotino® and range finder

continuously collect data and publish these for subscribing client or drivers. The range

finder driver measures distances to objects, whereas the Robotino® driver provides pose

estimates through the position2d interface by use of the kinematics derived on the

project Wiki.

When the Odometry estimator module receives odometry data from the Robotino®

driver, the data is applied to the action model, time stamped and pushed onto a data

queue to be processed by the AMCL module in which the actual filtering takes place.

A similar approach is used by the Laser estimator module when receiving measured

distances from the range finder driver. However, in this case, the laser model and map

are used.

The particle filter is initialized by randomly distributing the initial number of samples

(particles) over the entire map. At this point all particles are assigned similar likelihood

http://www.control.aau.dk/~tb/wiki

22 2.3. Required robot functionalities

weight since the robot could be anywhere on the map.

Next, the robot “senses” using a representative sample of the range readings . For each

particle the range data is compared to the ranges which would theoretically be correct,

if the robot’s pose was equal to the pose of the particular particle. This comparison,

results in a likelihood weight being assigned to each particle. The theoretically ranges

are computed using the map of the environment and a probabilistic model of the range

finder (denoted Laser model in Figure 2.6). If the robot has not moved, the sense step is

performed again. By letting odometry data have priority over range data, it is ensured

that the pose estimate will correspond to the latest received odometry data. However,

this might result in range data being queued up, especially when the number of particles

is large (e.g. in the initial phase of the filter’s operation). The queued range data will be

processed, when the computational demand decreases as a result of the increasing pose

estimate likelihood and the resulting decrease in the number of particles.

If the robot has moved, the odometry data is used through a probabilistic motion

model (denoted Action model in Figure 2.6) to update the filter. When updating the filter,

a new set of particles is generated based on the likelihood weights of the prior set along

with the motion model of the robot. The areas in which the likelihood weights were high

are assigned a larger amount of particles than the areas, in which the likelihood weights

were small.

The above described cycle is continuously repeated during AMCL filter operation.

Limitations of the amcl driver

The described amcl driver is designed for localization in static environments. However,

in this project, the Robotino® will be functioning in a dynamic environment in the sense

that a person will be walking about. This obviously affects the operation of the local-

izer due to the apparent inconsistency between actual range measurements and expected

range measurements. One possibility of overcoming this problem is to simply regard

the dynamics as noise. Alternatively, the state of the system may be augmented to em-

body the dynamics [Thrun et al., 2005, p. 269]. Yet another method, preferable due to its

simplicity compared to the state augmentation, is outlier rejection, which basically pre-

processes sensor measurements in order to eliminate measurements which are affected

by dynamics.

The documentation of the amcl driver states that the driver is still evolving. Specif-

ically, the likelihood models of the distance measuring device and odometry are char-

acterized as simple and candidates for further work. Hence, it is necessary to test the

Chapter 2. Analysis 23

function of the driver in the present hardware configuration to evaluate its performance.

Experiments and results on the amcl driver are described in Section 4.2.

24 2.3. Required robot functionalities

2.3.2 Pilot

From the use-case diagram of Figure 2.7. it is seen that Pilot’s only task is to ensure that

the robot avoids any unknown obstacles while moving.

Pilot

Avoid unknown

obstacles

Robotino
®

Range finder

Velocity ManagerNavigator

FIGURE 2.7: Use-case diagram of the Pilot functionality. The Pilot prevents

the robot from colliding with unknown obstacles, by using range finder

readings. Possibly altered velocity commands are passed on to the

Robotino® and the Velocity Manager.

To implement this feature, an existing Player driver (vfh) implementing the Vector

Field Histogram+ (VFH+) algorithm [Borenstein and Koren, 1991; Ulrich and Borenstein,

1998] is used.

The Vector Field Histogram+ algorithm

The different stages of the VFH+ algorithm are depicted in Figure 2.8.

When the VFH+ algorithm is invoked, a grid C containing the immediate surround-

ings of the robot is constructed and denoted as the active area. In this case the active area

is the area between −90◦ and 90◦ with respect to the forward direction of the robot, due

to this being the area in which the range finder operates (Figure 2.8(b)). When the range

finder detects an object in a specific cell, the certainty value cij of the cell is incremented,

and thus becomes a measure of the certainty of the cell being occupied by an obstacle.

Based on the distance between the cell and the robot centre (length of the obstacle vector)

along with the certainty factor cij , an obstacle vector is created for each cell. The active

area is divided into a number of angular sectors of equal angular size.

Based on the obstacle vectors a Polar Obstacle Density (POD) is calculated for each

sector, thus becoming a measure of density of obstacles within each sector. Furthermore,

the obstacle cells in the map are enlarged by the radius of the robot. Now, C can be

transformed into a primary polar histogram H as depicted in Figure 2.8(c) containing the

POD as function of the sectors taking into account the size of the robot. Sectors with high

PODs are called peaks whereas sectors with low PODs are called valleys. The primary

Chapter 2. Analysis 25

(b)(a)

(d)(c)

2 1 3 2 1

1

1 3 1

Obstacle vector

-90° 0° 90° Angle

Threshold

B

A

C

C

A

H

Robot

Target Target

1

2 1 3 2

1

1 3 1

Sectors

Resulting

direction 1

1

-90° 0° 90° Angle

C A

H

1

0

(e)

-90° 0° 90° Angle

C A

H

1

0

(f)

Active area C

c1,-4cell1,-4

FIGURE 2.8: Illustration of the VFH+ algorithm. The current situation (a) is

transformed into a histogram grid in which the cells are assigned certainty

factors (b). The histogram grid is then transformed into a primary polar

histogram (c) which is transformed into a binary polar histogram (d). By

taking the kinematics of the robot into account, the binary polar histogram

is transformed into a masked polar histogram (e), which is used for

determining the posterior bearing and speed of the robot (f).

26 2.3. Required robot functionalities

polar histogram is transformed into a binary polar histogram defining whether a sector

is either “free” or “blocked” (Figure 2.8(d)). The binary polar histogram is transformed

into a masked polar histogram taking into account the kinematics (steering capabilities

and speed) of the robot (Figure 2.8(e)). However, the Robotino® being holonomic, this

will have little or no effect in the present system.

When determining the steering angle, the valley, of the masked polar histogram,

which most closely matches the direction to the target is chosen. Within the chosen valley

the direction is chosen as the mean of the leftmost and rightmost obstacle free sectors, if

the valley is characterized “narrow” (Figure 2.8(f)). If the valley is “wide” i.e. above a cer-

tain angular limit, the boundaries with which the direction is calculated, are determined

by the obstacle on one side and the angular limit on the other. The speed of the robot is

proportional to the distance to the nearest obstacle.

Limitations of the VFH+ algorithm

VFH+ is a local path planner which plans the path to a given target based on immediate

sensor data. This entails, that the robot might get trapped if a dead-end situation oc-

curs in which the sensory information provides no possible path for the robot to choose.

However, the vfh driver handles this problem by letting the robot reverse its way out and

invoke a global path planner for a new target. Furthermore, not being based on a global

map, the VFH+ algorithm is not necessarily choosing the optimal path to the target.

The VFH+ is designed for avoiding static or slow moving obstacles. The present sce-

nario in which a person might be present in the environment the VFH+ algorithm is not

guaranteed to perform well, and must thus be subject to testing in order to measure its

performance. An approach which might be considered in case an optimization of the

VFH+ is needed, is described in [Huiliang and Ying, 2003].

Experiments by which the Pilot functionality has been verified are described in Section

4.4.

2.3.3 Navigator

Having described the reactive navigating functionalities of the robot, this section treats

the analysis of the Navigator, providing the robot with the deliberative functionality of

performing path planning towards a desired goal.

As in the cases of the Pilot and Localizer functionalities, it has been chosen to exploit

the possibilities in path planning offered by existing drivers for Player. Thus, tying to-

Chapter 2. Analysis 27

gether the previously described vfh and amcl drivers with the wavefront path-planning

driver, forms a “navigational trinity” offering a “global goto” ability to the system [Play-

erProject, 2006]. This is illustrated in Figure 2.9.

Localizer

[amcl]
Planner target

Way-point generator

[wavefront]

Motor commands

[vfh]

FIGURE 2.9: Complete navigational solution in terms of Player drivers

offering the abilities of a Localizer, Navigator and Pilot.

The wavefront driver

A use-case diagram of the Navigator is illustrated in Figure 2.10.

Navigator

Calculate necessary

way-point(s) to desired

destination

PilotCommunicator

Target

Map

Behaviour ManagerLocalizer

FIGURE 2.10: Use-case diagram of the Navigator functionality planning

routes from a map of the given environment. Notice, that the Navigator

provides the Pilot functionality with way-points to follow. Furthermore,

the way-points are delivered to the so-called Behaviour Manager,

controlling the robot’s behaviour as described in Section 2.3.7. The Target

and Communicator inputs represent generated and user (obtained from

communication) targets, respectively.

As seen from the figure, the path-planning driver wavefront takes as input both the

position of the robot provided by the amcl localizer and target locations. From these

inputs, along with a provided map of the given environment, way-points are generated

28 2.3. Required robot functionalities

for the robot to follow, and applied to the robot through the obstacle-avoiding vfh pilot.

The wavefront driver generates these way-points, by utilizing the so-called Wave-

front algorithm involving the steps as illustrated in Figure 2.11.

0 0 0 0 0 0

000000

0 0 1 0 0 0

011100

002 000Goal

0 0 0 0 0 0

000000

1 0 0 0

0111

000

6 6 6

87655

4 1 6 7 8

71113

43 765

(b)(a)

(d)(c)

6 7 8

5

4

2

3

4 4

33

432

WP

WP

WP WP

FIGURE 2.11: Illustration exemplifying the different steps constituting the

Wavefront algorithm, applied using an 8-point connectivity scheme. By

initially assigning a fixed value for all known obstacles, the Wavefront

algorithm starts from the robot’s current position (cell value 8), and

increments all adjacent free cells (cell value 0) according to the applied

connectivity scheme. This procedure is repeated until all free cells have

been altered. Finally, a trajectory is drawn by following decreasing cell

values from the one currently occupied by the robot.

Starting from Figure 2.11(a), an example environment is illustrated where the depicted

robot is to guide the person safely, i.e. avoiding all obstacles, towards the goal zone. This

is achieved by applying an occupancy grid of cells on the map as illustrated in Figure

2.11(b), and assigning e.g. ones in all occupied cells. Next, all cells are filled with val-

ues by starting a wave, hence the name Wavefront, from the goal destination towards

Chapter 2. Analysis 29

the robot using either a 4-point or 8-point connectivity scheme (denoting the amount of

surrounding cells embodied in the evaluation). Thus, starting from the cell currently oc-

cupied by the robot, all adjacent free cells according to the chosen connectivity scheme

are incremented. An intermediate step of such filling of cells using the 8-point connec-

tivity scheme is illustrated in Figure 2.11(c). Finally, as illustrated in Figure 2.11(d), when

no free cells remain, a trajectory is drawn by starting from the current position of the

robot and following cells with lower values. Way-points are placed where straight lines

of cells are broken. Thus, one or possibly multiple eligible routes are provided by the

Wavefront algorithm, ensuring that no deadlock situations can appear due to the wave

of incremented cells being associated with a connectivity scheme. The Player implemen-

tation singles out a preferred route by associating a potential fields like cost grid on top

of the one generated by Wavefront. By combining the two cost grids, an optimal path is

found in terms of both distance to goal and distance to obstacles.

The functionality of the Navigator has been verified by experiments as described in

Section 4.4.

2.3.4 Person Detector

While roaming a given environment, the robot must constantly be aware of its surround-

ings. Apart from the previously described functionalities of the Pilot, Navigator and the

Localizer, enabling the robot to plan routes, avoid obstacles and keep track of its loca-

tion, this section treats the functionality of detecting people. Due to the Person Detector

functionality not being the main focus of this project, it is furthermore chosen to keep the

implementation of this functionality simple.

A use-case diagram of the Person Detector is presented in Figure 2.12, illustrating the

various functionalities and procedures involved in the task of detecting a person.

Two drivers in Player are usable for the task of person detection, namely a shape track-

ing driver simpleshape and a colour tracking interface cmvision based on the CMVision

(Computer Machine Vision) algorithm [Bruce, 2006]. Both of these modules exploit the

camera mounted on the Robotino®, and provide the Player interface blobfinder. “Blob”

referring to regions in an image that are either brighter or darker than the surrounding.

For person detection, the functionality of blob detection is superior, since tracking a

certain shape on a person would require the robot to be quite close. The simpleshape

driver seems more suited for e.g. communicating with people, where close encountering

is an obvious necessity. Hence, the blobfinder driver is chosen. Furthermore, for the

blobfinder to be useful, the person will be marked with an easy distinguishable colour

30 2.3. Required robot functionalities

Person Detector

Robotino
®

Determine if a person

is detected

Behaviour Manager

Range finder

Estimate person pose

and velocity

<
<
 in
cl
u
d
e
 >
>

Person Evaluator

Localizer

Blob finder

Determine range finder

angle to detected blob

Measure distance to

person

<< include >>

<
<
 in
c
lu
d
e
 >
>

FIGURE 2.12: Use-case diagram of the Person Detector functionality. Inputs

from range finder, blob finder, and the Robotino® (odometry data) are used

in determining the pose and velocity of a detected person in the robot

frame. Furthermore, the Localizer input is used to provide the person’s

position in world frame coordinates.

Chapter 2. Analysis 31

marking.

Subsequently to detecting the person using the Blob finder, the pose and velocity must

be determined as indicated in Figure 2.12. The pose and velocity must be determined in

co-ordinates relative to the robot frame as well as in co-ordinates relative to the world

frame. The reason for this, is that the world co-ordinates of the person is needed to

determine his/her position in the environment, and the robot relative co-ordinates are to

be used during interaction, in which precise mutual behaviour is important.

The co-ordinates of the person in the robot frame can be determined by fusing the

sensor data from the camera and the range finder. Due to the desired simple implemen-

tation, traditional advanced approaches to fusing sensor data (as e.g. Kalman filtering) is

replaced by more simple methods. Furthermore, the velocity of the person is calculated

by simply differentiating the position estimates. However, when calculating the velocity

of the person, the motion of the robot must also be taken into account. Doing otherwise,

will make the robot relative co-ordinates error-prone due to the possible contribution

from the robot’s own motion.

To keep the estimation of the person’s heading simple, it is chosen to regard the di-

rection of the person’s velocity vector as the person’s current heading, rather than e.g.

applying different colour markings to the person. The Person Detector has been verified

by experiments described in Section 4.3.

2.3.5 Person Evaluator and Trainee

Having treated the actual recognition of a person in the environment, this section treats

the robot interaction in terms of person evaluation and learning.

Starting from the Trainee, this functionality is, as described in Section 1.2, to be imple-

mented on the basis of Case-Based Reasoning (CBR). What CBR does, is that it basically

allows the robot to understand a new problem/situation, by referring to past experiences.

Hence CBR, as the name infers, is implemented by defining a case resembling the expe-

riences the given system, in this case the robot, would face. In addition to this, the ability

to remember past experiences is implemented by the development of a case library.

Apparent from the above, the ability to evaluate the person detected is needed in order

to define a case, while the ability of a trainee is implemented through the CBR property

of improving performance based on past experiences. Figure 2.13 illustrates the task of

the Trainee by a use-case diagram.

32 2.3. Required robot functionalities

Trainee

Communicator
Perform appropriate

case database

operation

Behaviour Manager

Person Evaluator

FIGURE 2.13: Use-case diagram of the Trainee functionality performing case

database operations according to the CBR method. Input from Person

Evaluator denotes person characteristics used in the case definition, while

the Communicator is used to receive the final outcome of whether the

detected person is interested in interacting or not.

Case-Based Reasoning

According to [Kolodner, 1993] a case is a “contextualized piece of knowledge represent-

ing an experience that teaches a lesson fundamental to achieving the goals of the rea-

soner”. Thus, when e.g. the robot faces a new problem/situation, representing a case

is basically the task of extracting those features of the problem identified as the most

significant in relation to determining either the solution, the outcome or both. Having

decided on the case representation, CBR essentially involves two parts, namely recalling

and interpreting past experiences [Kolodner, 1993; Delany, 2006]:

Recalling or retrieving past experiences, is in CBR terminology defined as the indexing

problem described as “the core of case-based reasoning”. Thus, a satisfying solu-

tion to the indexing problem results in a system capable of retrieving experiences

in an effective manner, when facing similar conditioned experiences.

Interpreting or reusing a recalled case, is done by comparing it with the situation cur-

rently faced. If a good match or matches exists in the case library, there should

be no immediate reason for interpretive processes. A situation referred to as null

adaptation. On the other hand, when facing a problem difficult to match in the

library adaptation of cases is necessary.

When the solution output from the reuse process is known, further case processing

must be made. Also known as revision and retention, such further processing is

essentially what constitutes the learning capability of a CBR system. Revision is

partly the process of evaluating the solution output, and partly the process of diag-

nosing and repairing the possible discrepancy. The output of the revision process is

a revised case, which is to be retained in memory of the system. Thus, the process

Chapter 2. Analysis 33

of retention is basically to archive the results of an applied case if proven useful.

The above description of the CBR method, is summarized in Figure 2.14

New

case

Previous cases

(Main case database)

Learned

case

Solved

case

Tested

case

Retain Reuse

Retrieve

Problem

Proposed solutionConfirmed solution

Revise

Retrieved

case

FIGURE 2.14: Illustration of the (4R) CBR cycle involving the processes

retrieve, reuse, revise and retain [Aamodt and Plaza, 1994].

Person evaluation

Apparent from the above, an essential task of CBR is the determination of a case defi-

nition. As also indicated, since the Trainee is to improve the robot’s behaviour towards

detected persons, the case must somehow reflect certain characteristics of those people

detected. This is essentially the task of the Person Evaluator, illustrated by a use-case

diagram in Figure 2.15.

Since the only data available on detected persons is the output of the Person Detector,

the evaluation possibilities of the Person Evaluator are limited to only concern motional

characteristics. However, according to [Garcı́a-Rojas et al., 2006] a lot of information on a

human’s state of mind, can be extracted from the way he/she behaves/moves. Based on

this statement, it seems reasonable to believe that case inclusion of a person’s motional

characteristics, provides for satisfactory differentiation in terms of whether a detected

person is interested or not.

The implementation of the Person Evaluator is described in Section 3.4.2, whereas the

verification of its functioning is included in the experiments documented in Section 4.3.

The complete case definition is presented in Section 3.4.3.

34 2.3. Required robot functionalities

Person Evaluator

Person Detector

Extract behavioural

features of detected

person

Compare to pre-

experinced behavioural

features

Trainee

<
<
 i
n
c
lu
d
e
 >
>

Initiate communication

with detected person

Communicator

<< includ
e >>

FIGURE 2.15: Use-case diagram of the Person Evaluator functionality.

Using input from the Person Detector, the Person Evaluator determines

certain characteristics of the detected person to be included in the case

description for the Trainee. Furthermore, the Person Evaluator must

notify the Communicator, whenever the person is within a certain range

allowing for a conversation to be made.

Chapter 2. Analysis 35

2.3.6 Communicator

As indicated on the use-case diagram of Figure 2.16, the purpose of the Communicator

functionality is to enable the robot to engage in conversations with encountered persons.

Most importantly, the robot must be able to communicate in a basic and instinctive hu-

man language.

Communicator

Robotino
®

Receive answer from

person

Navigator

Trainee

FIGURE 2.16: The functionality of the Communicator illustrated by a

use-case diagram. The task of the Communicator is to enable the robot to

conduct two-way communication with encountered persons.

In the robot research community, a variety of different techniques for communication

are investigated, ranging from recognition of simple symbols, to more advanced recog-

nition solutions involving human gesture and speech [Breazeal, 2002]. Starting from the

discussion on the profitable aspect in the ongoing endeavour to make robots as human

alike as possible, robot communication must naturally be exposed to the same degree of

disagreement. Thus, one could argue, that a limited set of gestures or spoken vocabulary,

does not necessarily improve the conditions for successful communication, since the set

of choices does not conform with the advanced communicative skills of human beings.

Thus, the gestures to be performed and the language to be spoken, would seem unnatu-

ral and mechanical to a human being. However, in some scenarios of e.g. tour guiding

robots, especially spoken communication would undoubtedly be of great value.

To provide the Robotino® with human understanding capabilities, it has been chosen

to utilize the IR sensors mounted on its rim. Such realization of the robot’s communica-

tive skills naturally introduces some restrictions on the conversation to be conducted,

since the sensors only provide means for receiving answers like “yes” or “no”. Conse-

quently, in order to establish a two-way communication, the robot requires a functionality

to pose questions for the encountered person to answer.

Such functionality has not been considered in the scope of this project, since the focus

is aimed at understanding a persons behaviour. Thus, an implied condition for the per-

son when engaging in robot communication, is to tell the robot whether he/she in fact

36 2.3. Required robot functionalities

did want to communicate or not.

2.3.7 Behaviour

In order for the robot to function in a human environment it is crucial, that the robot is

accepted by humans. Otherwise, if e.g. humans are scared by the robot, it will not be able

to perform its assistive tasks. According to prior research [Butler and Agah, 2001], the

behaviour of a robot can advantageously be adapted to exhibit a human-like behaviour,

if the robot is to be accepted by humans. In other words, if the robot acts like a human

it is more likely to be accepted as a social entity in a human environment. A number of

studies have been made on this particular subject and are described in e.g. [Butler and

Agah, 2001], [Koay et al., 2006], [Huettenrauch et al., 2006], and [Walters et al., 2005].

Based on these studies, a number of rules regarding the robot behaviour in relation to

spatial relationships can be stated. The rules relate to the proxemics of human interaction

and are defined by using the so-called Hall zones, which along with the principle of

proxemics are described in [Hall et al., 1968]. The Hall zones, which originally arose in

studies of human-human interaction, have also proven eligible in HRI [Koay et al., 2006]

and is shown in Figure 2.17.

1 2 3 4

Zone 1: Initimate Zone, < 0.45 m

Zone 2: Personal Zone, 0.45 – 1.2 m

Zone 3: Social Zone, 1.2 – 3.6 m.

Zone 4: Public zone, > 3.6 m

FIGURE 2.17: A person with his associated Hall zones. The grey-coloured

area is off-limits for the robot due to a resulting human discomfort.

The rules governing the spatial behaviour of the robot are listed below:

• The grey-coloured area is off-limits to the robot due to people generally feeling

discomfort when the robot moves behind their back.

Chapter 2. Analysis 37

• Zone 4 (Public Zone): The robot can move freely
• Zone 3 (Social Zone): The robot must adjust the speed and keep inside the person’s

field of view. The robot is not allowed to approach the person directly. Instead an

indirect route must be chosen. The speed must not exceed 0.5 m
s .

• Zone 2 (Personal Zone): The robot is only allowed to be inside this zone if commu-

nication with the person is to be carried out. When communicating, the robot must

stop in front of the person.
• Zone 1 (Intimate Zone): The robot is not allowed to be inside this zone. If the

person moves, such that the robot enters this zone, the robot must move outside

again.
• The behaviour of the robot must not appear too machine-like. Hence, its move-

ments should be smooth and sudden changes in speed and direction should be

avoided.
• Wherever possible, the robot must avoid moving through zones in which the per-

son cannot see it.
• The robot must never be on a collision course with the person.
• A small robot is preferred rather than a human size robot. According to [Butler and

Agah, 2001] this is due to a human size robot having a more intimidating effect on

humans.
• To strengthen human perception of the robot, it should be able to express its mood.

Preferably both in terms of an emotional display and by adjusting its behaviour to

the current mood.

The spatial behaviour is closely related to the navigation of the robot. Hence, the above

specified spatial rules are to be implemented as Player drivers. It has been chosen to

develop two drivers being Behaviour Manager and Velocity Manager. One for handling

the navigation while the robot interacts with a person, and one for handling the robot’s

velocity in general. Use-case diagrams of the two drivers are seen in Figures 2.18 and

2.19, respectively.

The Behaviour Manager is must take over the navigational features of the robot, when

a person is detected. Otherwise, the Navigator and Pilot will regard the person as an

obstacle, thus avoiding him/her.

As seen from the listed rules, the robot must adjust its speed according to its distance

to the person. This limitation must be performed whether the robot is interacting with

the person or not. Hence, it is necessary that the Velocity Manager can be invoked inde-

pendently of the Behaviour Manager.

For the developed Player drivers to function, data regarding the spatial features of a

detected person is needed. Furthermore, the drivers are not to be invoked at all times.

38 2.3. Required robot functionalities

Behaviour Manager

Trainee

Compute velocity

commands

Robotino
®

Person Detector

Velocity ManagerNavigator

FIGURE 2.18: Use-case diagram of the Behaviour Manager which handles

the navigation while robot is interacting with a person.

Velocity Manager

Limit allowed velocity of

robot

Robotino
®

Person Detector

Pilot

Behaviour Manager

FIGURE 2.19: Use-case diagram of the Velocity Manager. The Velocity

Manager handles the velocity of the robot according to the distance

between the robot and the person.

Chapter 2. Analysis 39

Hence data must be provided to the drivers indicating invocation. The part of the system,

which handles the communication is presented in the following section.

40 2.4. Controller

2.4 Controller

2.4.1 Controller objectives

The main objective of the Controller is to interconnect the functionalities described in the

preceding sections.

It has been chosen to implement such an interconnecting functionality by the use of a

Player client, thus allowing the development of the Controller to be performed with the

only requirement of supporting the client interface. Since Player comes bundled with a

C++ client library libplayerc++, this library has been chosen as the base upon which

the Controller will be developed.

As indicated from the use-case diagram of Figure 2.20, all of the above described func-

tionalities operate at different robot stages, e.g. when the robot is roaming, or communi-

cating. Thus, the Controller must contain a method for supervising (monitoring and

controlling) the different states as listed below.

Controller

Functionalities

Determine state of

system

Interconnect necessary

functionalities in

accordance with

current state

Functionalities<< include >>

FIGURE 2.20: Use-case diagram of the Controller, used to interconnect all

the functionalities described in Section 2.3.

• Localizing - when the amcl driver reports unsatisfactory levels of certainty.

• Roaming - when the robot is moving around the environment looking for people

to investigate. Note, that in the state of roaming, the Controller must be able to

distribute targets inside the given environment, laying more around the positions

where it has encountered the most people exhibiting interested behaviours.

• Approaching - upon person detection the robot moves closer to the person in order

to verify his/her heading.

• Evaluating - having verified the heading of the person, and still able to get closer,

the robot evaluates the person’s behaviour.

Chapter 2. Analysis 41

• Communicating - if the person exhibits interested behaviour and “allows” the

robot to come close, the encounter results in a communication between person and

robot.

• Guiding - if the person needs guidance, the robot must be able to move to the

desired destination.

• Returning - in case of failure or low battery, the robot must return to base.

State-supervision

Considering the Controller as a finite state machine, requires definition of the various

edges/conditions controlling the legal transitions of the machine. Studying Figure 2.21,

the states listed above have been depicted along with the identified transition conditions

to be described in the following.

Roaming

Localizing

Approaching Evaluating

Communicating

Guiding

malfunction

interest

interest

interest

detected

no interest

target reached

malfunction

malfunction

no malfunction

no interest

located lost

malfunction

Localizing

FIGURE 2.21: Illustration of the supervisory state monitoring to be

performed by the Controller. Note, that the transition from state

Returning to Roaming requires external robot assistance, in order to cope

with the given malfunction, e.g. recharging the batteries, or fixing a

sensor.

lost

Covers the situations where the Localizer (amcl driver) reports significant pooled

42 2.4. Controller

pose variance values, signalling that the current robot pose estimates are influ-

enced by a certain degree of uncertainty. The reason for only including the lost

transition condition in the state of roaming, is that the states of Approaching, Eval-

uating and Communicating all are handled in robot frame coordinates, and thus

not vulnerable to errors in the global localization. Furthermore, during Guiding it

is assumed that the amcl driver, while the robot moves through the environment,

will be provided proper differentiating laser measurements to maintain a relative

good position estimate.

located

Having performed localization and again reached an acceptable level of pose cer-

tainties, the robot fulfils the located transition condition, and returns to roaming

the environment.

detected

This condition covers the situation where a person is detected, and thus must be

investigated further by the robot.

interest

If the detected person, while the robot is Approaching, Evaluating and Communi-

cating, exhibits signs of interest, the “interest” transition condition is fulfilled.

target reached

Whenever the robot has finished guiding a person to his/her desired destination,

the “target reached” condition is fulfilled, and the robot returns to the state of roam-

ing.

no interest

Contrary to the above, the transition condition of “no interest” is fulfilled when the

person exhibits no signs of interested behaviour towards the robot.

malfunction

If e.g. one of the motors fails, or if the battery level gets dangerously low, the condi-

tion of “malfunction” is fulfilled. Hence, the Controller should be able to monitor

the robot’s current health, and to react if any abnormalities are discovered.

no malfunction

If no sign of malfunctioning is showing, the robot is ready for normal operation.

By example, if the robot has returned to the base due to a low battery level, the

transition “no malfunction” is applicable when recharged.

Having analysed all of the functionalities needed in order to fulfil the overall objec-

tive, the following section describes the design of a system structure, tying together the

individual robot functionalities.

Chapter 2. Analysis 43

2.5 Software structure

Having treated the analysis of the various individual elements constituting the overall

system solution, this section provides a system overview by presenting an overall system

description. The proposed system structure is presented in Figure 2.22.

Robotino
®

Robot interface

Trainee

Communicator

Person Evaluator
Controller

Player

WLAN - TCP/IP

Navigator

Behaviour Manager

Velocity Manager

Pilot

Robot control

Human-Robot Interaction

Person Detector

PC

Robot

Range finder

Hardware control

Range finder

driver

Localizer

Robot driver

RobotinoCom

FIGURE 2.22: Proposed system structure, illustrating the various layers

needed to link the Robotino® with the top-most interaction abilities

implemented in the client. Note that a player server is implemented on the

PC to make use of its computational capabilities in relation to the

demands of the amcl localization driver.

As indicated on the figure, the system structure is divided into four parts, being Robot

interface, Robot control, Human-Robot Interaction and Controller which all will be de-

scribed in the following.

Robot interface

Embodies the Player part of the system structure needed for interfacing the

Robotino® hardware and the range finder. Thus, in providing hardware interfaces,

the Robot interface lays the foundation,for the remaining elements of higher layers

to be built upon.

As seen from the figure, the task of interfacing the Robotino® with Player is nar-

rowed down to developing a bridge connection between the Player server and the

drivers shipped with the Robotino®.

44 2.5. Software structure

Robot control

The Robot control is the part of the system where all controlling commands are

generated and passed on to the robot through Player, thus covering the functional-

ities of the Behaviour Manager, the Velocity Manager, the Localizer, the Pilot, and

the Navigator. As seen from Figure 2.22, the Localizer is placed in the scope of a

regular PC. This is done in order to cope with the fairly large amount of computa-

tions carried out by the amcl driver as described in Section 2.3.1.

Human-Robot Interaction

As indicated on Figure 2.22, Robot interaction is to be implemented on a regular

PC as a client to the Player server. Hence, the implementation of the, primarily HRI

related, abilities; Person Detector and Evaluator, Communicator and Trainee can

be implemented in a wide range of programming languages.

Controller

As described in Section 2.4, the Controller handles the system’s internal communi-

cation as well as the overall system supervision.

Having analysed the various parts of the system, the overall software structure is pre-

sented in the following section.

CHAPTER 3

Design and Implementation

3.1 Player driver architecture

Along with the above described Player drivers developed during this project, a number

of existing drivers are used. In combination, all drivers constitute a driver architecture.

In Figure 3.1, an overview of this architecture is presented along with the interfaces com-

bining the individual drivers.

Robot driver

Range finder driverVelocity Manager

Pilot

[vfh]

Navigator

[wavefront]

Behaviour Manager

Localizer

[amcl]

Map

Person Detector

Blob finder

[cmvision]

position2d:0

position2d:4

position2d:1

position2d:3

planner:0

laser:0 laser:0

laser:0

blobfinder:0

position2d:2

localize:0position2d:2

map:0

position2d:0

camera:0

opaque:0

opaque:1

position2d:5

position2d:6

position2d:0

Controller

ControllerHuman-Robot InteractionRobot controlRobot interface

FIGURE 3.1: The applied Player driver architecture. Each block contains the

name functionality, while arrows represent interfaces and direction of data

flow. Note, that the driver name is included where existing Player drivers

are used.

As seen in Figure 3.1, some interfaces are used more than once. To provide a com-

prehension of the use of the interfaces, the data exchanged through each interface is

described in Appendix C. A detailed specification of each interface is found in [Play-

erProject, 2006].

46 3.2. Robot interface

Referring to the legend of Figure 3.1, the following sections will treat each of these

system parts individually.

3.2 Robot interface

3.2.1 RTLinux module

As described in Section 2.1.1, interfacing the Robotino® hardware is done through a

RTLinux layer. Hence, a RTLinux module is needed to provide a connection between the

user software executing in the Linux user space and the hardware through the RTLinux

layer in kernel space. The module is written in standard C, primarily utilizing the func-

tions found in rt_com.h and rtl_fifo.h and the overall principle of the module is seen

in Figure 3.2

Linux user space RTLinux Range finder

RT FIFOs
RT module

RS-232

FIGURE 3.2: Overall operational principle of the RTLinux module. Data is

exchanged between Linux user space and RTLinux kernel space through

RT FIFOs.

The communication between Linux user space and RTLinux is done through FIFO buffers

(RT FIFOs), whereas connecting to the serial port (used for communicating with the range

finder device) is done directly from RTLinux. Three FIFOs are created: Two for moving

serial data between user space and RTLinux, and one for moving messages from user

space to RTLinux. Furthermore, three handlers are set up, of which two handle the actual

data movement between the serial port and the data FIFOs. One is invoked by an inter-

rupt from the serial connection, while the other is invoked when data is present in the

FIFO. The third handler deals with messages sent from Linux user space, e.g. requests to

change the baud rate used for the serial communication.

The following section treats the developed Player drivers, which as part of the project

contributions, make the Robotino® platform available to the Player community.

Chapter 3. Design and Implementation 47

3.2.2 Robot driver for Player

As mentioned earlier, the task of the robot driver is to interconnect the functions of the

RobotinoCom API with the described framework of a Player plug-in driver. The following

interfaces are provided by the Robotino® Player driver:

position2d

Used in controlling mobile robot bases in R2. Not all functionalities of the inter-

face have been implemented, but only those enabling users to pass commands to

the motors, and read data from the encoders. These functionalities are associated

with certain messages and requests sent to and from the robot driver providing the

position2d interface.

The developed driver accepts velocity commands which are applied to the

Robotino® through the following RobotinoCom function:

void setVelocity(double vx, double vy, double omega)

vx is the velocity in x direction
[mm

s
]

vy is the velocity in y direction
[mm

s
]

omega is the angular velocity
[deg

s
]

Furthermore, the robot must continuously output its state in terms of velocity and

position. The velocity information is retrieved from Robotino® by use of the fol-

lowing function:

float actualVelocity(unsigned int motor)

where motor is the given motor on the robot.

Note that this function actualVelocity, in spite of being declared as a float,

returns an integer number specifying pulses pr. millisecond on the encoder.

The actualVelocity function returns the velocity of each individual motor. To

make this conform with the position2d interface, it is translated into the robot’s

velocity in the x and y direction along with its angular velocity. This translation is

done using the Robotino® kinematics, which are derived in the project Wiki. The

position is calculated by using integrating the velocity data.
ir

The ir interface provides access to readings of all nine IR sensors on the Robotino®.

The readings are obtained by the use of the following RobotinoCom function:

float distance(unsigned int n)

http://www.control.aau.dk/~tb/wiki

48 3.2. Robot interface

where n denotes the IR sensor, i.e. integers within the sequence [1; 10].
bumper

This interface provides access to the bumper on the Robotino®, using the following

function:

bool bumper()

If the bumper is pressed the function returns 1, otherwise 0.
camera

The following RobotinoCom function is used to set up the connection to the camera:

void setCameraParameters(const CameraParameters& param)

param is a struct containing camera parameters.

Having set up the connection, the camera is directly accessed by Player through the

camera interface.
power

Used to provide access to the Robotino® state of charge by using the following

RobotinoCom function:

float voltageBatt1plus2() const

Source code of the Robotino® driver can be found in Annex 1.

3.2.3 URG driver for Player

A Player driver (urglaser) for the URG-04LX already exists and is distributed with the

Player distribution. However, the driver needs some modification in order to be usable

with the Robotino®. This need for the modification emanates from the fact that the sen-

sor is interfaced through RS-232 compatible serial connection. However, as described in

Section 2.1.1 accessing a serial port on the Robotino® can only be by using the RTLinux

module described in Section 3.2.1.

Therefore, instead of accessing the serial port directly, the modified driver accesses

the three serial FIFOs of the developed RTLinux module. For that reason, a number of

options have been added to the configuration file of the driver. These options are listed

in Code 3.1.

1 use_rt_fifo 1
2 fifo_write "/dev/rtf1"
3 fifo_read "/dev/rtf2"

Chapter 3. Design and Implementation 49

4 fifo_message "/dev/rtf3"
5 baud 115200

CODE 3.1: Additional options for the modification of the URG-04LX Player
driver.

The first option use_rt_fifo is used to specify whether the modification of the driver

is to be used or not. If set to 0 the driver connects directly to a serial port. The options

fifo_write, fifo_read, and fifo_message are used to specify the hardware addresses

of the three FIFOs. Using the baud option, the baud rate can be specified. The possible

baud rates are determined by the sensor’s communication protocol to be 19200, 57600

and 115200 baud.

3.3 Robot control

3.3.1 Behaviour Manager

Based on the analysis regarding human perception of robot behaviour in Section

2.3.7, this section contains the implementation of the robot Behaviour Manager

Player driver.

As seen in Figure 3.3, the Behaviour Manager is located between the Naviga-

tor and the Pilot, and must be invoked when the robot is inside a person’s Social

Zone. Hence, the Behaviour Manager must, in place of the Navigator and the Pi-

lot, provide the robot with velocity commands. Therefore, the obstacle avoiding

capabilities of the Pilot are disabled whenever the Behaviour Manager is invoked.

Figure 3.3 shows that the Behaviour Manager receives floatPersonIndication

from an opaque interface which is used for transferring data from the Controller

to the Behaviour Manager. The floatPersonIndication is used for indicating

whether the Behaviour Manager should be invoked or not. Thus, a value differ-

ent from −1 will result in the Behaviour Manager being invoked. Otherwise, the

output from the Navigator is relayed directly to the Pilot. In the current imple-

mentation, only the floatPersonIndication is used by the Behaviour Manager.

The specific use of the floatPersonIndication will be described later in this sec-

tion.

50 3.3. Robot control

Robot driver

Range finder driverVelocity Manager

Pilot

[vfh]

Navigator

[wavefront]

Behaviour Manager

Localizer

[amcl]

Map

Person Detector

Blob finder

[cmvision]

Controller

position2d:0

position2d:4

position2d:1

position2d:3

planner:0

laser:0 laser:0

laser:0

blobfinder:0

position2d:2

localize:0position2d:2

map:0

position2d:0

camera:0

opaque:0

opaque:1

position2d:5

position2d:6

position2d:0

FIGURE 3.3: Located between the Navigator and Pilot, the Behaviour

Manager must be capable of relaying messages when not invoked itself.

The data received from the Controller is used in the behaviour algorithm

to calculate the velocity commands for the robot.

Chapter 3. Design and Implementation 51

Behaviour algorithm

In [Sisbot et al., 2006] and [Sisbot et al., 2005] a method for human-aware navi-

gation is proposed, making use of cost functions to punish the robot when enter-

ing specific zones in relation to a human being. This is done by implementing

a “safety grid” which is basically a human centred normal distribution in which

the value of each grid cell represents a cost. Furthermore, a “visibility grid” is im-

plemented. The visibility grid is “constructed according to costs reflecting the effort

required by the human to get the robot in his field of view” [Sisbot et al., 2006]. How-

ever, a gap exists between the above described approach and the functionalities

needed for the work of this project. These functionalities, concerning human-

aware navigation are:

• The need for changing the shape and not only the circular size of the grid

repelling the robot from the person.

• The desire for attracting the robot towards the person in specific approach

angles.

The need for changing the grid shape emanates from the need for the robot

to be able to actually get close to the person if so required by the person’s be-

haviour. Furthermore, the single normal distribution causes no difference for the

robot when approaching the person from the side or head-on compared to some

desirable approach angle in between.

The approach for human-aware navigation proposed and implemented in this

project is a behaviour grid based on a combination of multiple bi-variate normal

distributions. The reason for this, is that normal distributions are computation-

ally feasible and at the same time intuitively perceivable. A bi-variate distribution

is given by:

fX(x) =
1

(2 π) |Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(3.1)

Where x ∈ R2 and µ ∈ R2 and the covariance matrix Σ is a positive semi-definite,

and real 2× 2 matrix.

The distributions are calculated in the person frame with mean µ = (0, 0) as

depicted in Figure 3.4. Furthermore, it is seen that negated distribution has a

52 3.3. Robot control

circular shape and thus is isotropic. The other three distributions have elliptic

shapes. The shape of the individual distribution is defined by the covariance ma-

trix Σ. Defining the Σ matrices as seen in (3.2), the entries σ2
x and σ2

y can be used

to adjust the minor and major axis (i.e. the width and length) of the distributions,

whereas σxy can be used for rotating the distributions.

Σ =

[
σ2

x σxy

σxy σ2
y

]
(3.2)

The rotation θ of the distribution is given by [Strang and Borre, 1997]:

tan(2θ) =
2 σxy

σ2
x − σ2

y

(3.3)

ForwardBackward

yp

xp

θ

Negated distribution

Backward distribuion

Parallel distribution

Perpendicular distribution

FIGURE 3.4: The four bi-variate normal distributions used for grid

calculation. Note, that when calculating the grid values, only the

backward part of the backward distribution, and the forward parts of the

parallel and perpendicular distributions are used.

Negated distribution The purpose of the isotropic negated distribution is to at-

tract the robot towards the person, and is used both when the robot is be-

hind and in front of the person. The circular size of the negated distribution

is fixed, using σ2
x = σ2

y = 7.5 and σxy = 0.

Chapter 3. Design and Implementation 53

Backward distribution The anisotropic backward distribution is used to repel

the robot when inside the backward part of the person’s Social Zone as de-

scribed in Section 2.3.7. The reason for the shape of this distribution not

being completely circular is due computational issues, which will be in-

troduced later in this section. Introducing such dissimilarity, is deemed

insignificant to the purpose of the algorithm, due to the distribution still

being largest one directly behind the person. The backward distribution is

only used when the robot is behind the person and the length and width

are fixed at σ2
x = 2, σ2

y = 1 and σxy = 0.
Parallel and perpendicular distributions From the analysis in Section 2.3.7, the

robot is not allowed to approach the person directly from the front. Further-

more, approaching the person directly from the sides, might cause discom-

fort to the person. Hence, the approach angle must be inside ±45◦ relative

to xp. The widths of the forward distributions are fixed at a width similar

to that of the backward distribution (i.e. σ2
y = 1) at angles in the intervals

[−90◦,−45◦] and [45◦, 90◦]. Furthermore, the angle θ (as seen on Figure 3.4)

is made variable, enabling the robot to approach the person when in front of

him/her. This is a necessity when human-robot communication is desired.

The parallel and perpendicular distributions are used only, when the robot

is in front of the person.

Important to realize, is that changing the length and/or the width of a nor-

mal distribution, also affects its magnitude due to the fact that the integral of the

distribution is 1. Hence, to equalize the contributions from the individual distri-

butions, the magnitudes are normalized in the following way: The maximum of

the backward distribution and the sum of the forward distributions are normal-

ized to unity. Normalizing factors are determined by calculating the magnitude

of each distribution at its mean value. The magnitude of the negated distribution

along with the distribution widths and lengths are manually tuned based on the

desired shape of the resulting grid.

An example of the contours of the resulting grid determined by the forward

and backward distributions is presented in Figure 3.5(a). The values of the Σ’s

have been fitted to make the grid resemble the Hall zones mentioned above.

Thus, for the parallel distribution σ2
x = 1 and σ2

y = 0.15, while for the perpen-

dicular distribution σ2
x = 0.15 and σ2

y = 1. Furthermore, θ is fixed at 0◦.

54 3.3. Robot control

-4 -2 0 2 4
-4

-2

0

2

4

x

y

0

0.2

0.4

0.6

0.8

1

(a) Forward part of the grid.

-4 -2 0 2 4
-4

-2

0

2

4

x

y

0

0.2

0.4

0.6

0.8

1

(b) Backward part of the grid.

FIGURE 3.5: Contours of the behaviour grid. The grid consists of three parts;

A forward part, a backward part, and a negated part, which are calculated

independently. The negated part is merely a circular normal distribution

and is thus not depicted. The grid co-ordinates are specified in meters,

whereas the colour gradient represents the magnitude.

It is seen, that this part of the grid will prevent the robot from coming too close

to the front of the person i.e. co-ordinates in the person frame where x is larger

than zero, and y is small. Furthermore, the robot is prevented from approaching

the person directly from the sides.

The backward part of the grid (depicted in Figure 3.5(b)) ensures that the robot

will not enter the Social Zone behind the person.

The final part of the grid is the isotropic negated distribution, attracting the robot

towards the person and is not depicted due to its simplicity.

As described above, the proposed navigation approach makes it possible to

use the person’s behaviour to alter grid parameters. For this purpose, the input

floatPersonIndication obtained from the Controller through an opaque interface

is used for specifying the widths of the forward distributions, and for specifying

the rotation angle θ. The floatPersonIndication takes on values in the range

of −1 to 1 and results from the Person Evaluator’s estimation of the person’s

interest in interacting with the robot. The person being “interested” will result

in values above 0.5, whereas lower values between indicates a person being “not

interested”.

In Figure 3.6, the mapping from floatPersonIndication to forward distribu-

tions widths and rotation angle is depicted. Note, that the value of the widths

Chapter 3. Design and Implementation 55

can not be 0, since this results in the covariance matrix Σ becoming a zero matrix.

Hence, the minimum value of the widths is set to 0.01.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
id

th
s

floatPersonIndication

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

30

35

40

45

50

A
ng

le

floatPersonIndication

Angle

Widths

FIGURE 3.6: The mapping from floatPersonIndication to the widths and

rotation angle of the forward distributions. The minimum of the widths is

set to 0.01 to prevent the covariance matrix from becoming a zero matrix.

The figure shows, that starting from zero indication, the widths of the distri-

butions decrease to a certain threshold when floatPersonIndication increases.

Subsequently, the rotation angle is increased until θ = 45◦. Figure 3.7 illustrates

the effect of varying the floatPersonIndication value.

In the case depicted in Figure 3.7(a), the floatPersonIndication is 1, representing

an interested person. As seen in the figure, the robot will be attracted towards

the minimum located directly in front of the person. Figure 3.7(b), illustrates the

case in which the floatPersonIndication is 0.5. Both the widths of the forward

distributions and the rotation angle are small, resulting in the robot approaching

the person in an angle of approximately 45◦ before ending in one of the minima.

Finally, in Figure 3.7(c), the floatPersonIndication is fixed at 0◦, representing a

person who is not interested. As seen from the figure, the robot is not allowed to

approach the person.

Figure 3.7 also illustrates the reason for the backward distribution not being

completely circular. Had it been circular, the grid value would be constant at

similar distances from the person. Thus, the robot would not be attracted towards

the front of the person.

56 3.3. Robot control

-4 -2 0 2 4
-4

-2

0

2

4

x

y

-0.4

-0.2

0

0.2

0.4

(a) floatPersonIndication = 1

-4 -2 0 2 4
-4

-2

0

2

4

x

y

-0.4

-0.2

0

0.2

0.4

(b) floatPersonIndication = 0.5

-4 -2 0 2 4
-4

-2

0

2

4

x

y

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(c) floatPersonIndication = 0

FIGURE 3.7: The resulting grid governed by the four distributions is

depicted at different values of the person interest indication

floatPersonIndication. The grid co-ordinates are specified in meters,

whereas the colour gradient represents the magnitude.

Chapter 3. Design and Implementation 57

Human-aware navigation

In order to use the above described grid for navigation, the robot must choose

a driving direction which will always lead it to a place on the grid with a lower

value than the value of its current position, given that the robot is not located

in one of the grid minima. This is done by utilizing an eight point connectivity

scheme to define candidate points in the robot frame (see Figure 3.8).

-4 -2 0 2 4
-4

-2

0

2

4

x [m]

y
[m

]

x
r

y
rx

p

y
p

x
g

y
g

FIGURE 3.8: When determining the robot’s current velocity vector, the

candidate points of the eight point connectivity scheme (illustrated with

grey circles) adjacent to the current location of the robot in the robot frame

are transformed into the person or grid frame, and the grid values are

calculated. The vector to the point with the smallest grid value (given that

it is smaller than the grid value at the robot’s current location is used as

velocity vector. The person is illustrated with an x, whereas the robot is

marked with a l. Note, that the distances between candidate points and

robot are exaggerated.

These points correspond the robot’s current position and the eight adjacent posi-

tions. The grid values of the candidate points are calculated and the robot is pro-

vided with a velocity vector corresponding to the point with the smallest value.

Calculating the grid values is done by transforming the co-ordinates of the can-

didate points into the person frame (also denoted the grid frame) illustrated in

Figure 3.8 by (xp, yp) and (xg, yg) respectively. The person frame is used when

58 3.3. Robot control

-4 -2 0 2 4
-4

-2

0

2

4

x

y

Person

-0.6

-0.4

-0.2

0

0.2

(a) floatPersonIndication = 1

-4 -2 0 2 4
-4

-2

0

2

4

x

y

Person

-0.4

-0.2

0

0.2

(b) floatPersonIndication = 0.5

FIGURE 3.9: Simulation of the described navigational approach. The axes

correspond to the person frame and the path of way-points chosen by the

robot is marked by a red line. The initial position of the robot is behind the

person and the final position in front of the person. The final position of

the robot results from the person interest indication

floatPersonIndication. The grid co-ordinates are specified in meters,

whereas the colour gradient represents the magnitude.

calculating the backward part of the grid, while the grid frame is used when cal-

culating the forward part of the grid. This difference, results from the fact that

the backward part is fixed to the person, whereas the forward part may be ro-

tated relative to the person. In Figure 3.9, a simulation of the above described

approach is presented, in which the robot is initially located behind the person.

The simulation shows that the robot initially is too close to the person and hence

is repelled from the person. When an acceptable distance is reached, the robot

follows the contours of the grid until reaching a minimum of the grid. This places

the robot close to the person at an angle of approximately 45◦ in the “interested”

case (Figure 3.9(b)) and 0◦ in the “not interested” case (Figure 3.9(a)).

When determining the velocity vector of the robot using the above described

approach, no considerations are made to whether the velocity is suitable in rela-

tion to the distance between the robot and the person. This issue is handled in by

the Velocity Manager described in the next section.

Chapter 3. Design and Implementation 59

3.3.2 Velocity Manager

Robot driver

Range finder driverVelocity Manager

Pilot

[vfh]

Navigator

[wavefront]

Behaviour Manager

Localizer

[amcl]

Map

Person Detector

Blob finder

[cmvision]

Controller

position2d:0

position2d:4

position2d:1

position2d:3

planner:0

laser:0 laser:0

laser:0

blobfinder:0

position2d:2

localize:0position2d:2

map:0

position2d:0

camera:0

opaque:0

opaque:1

position2d:5

position2d:6

position2d:0

FIGURE 3.10: The location of the Velocity Manager in the overall system

structure.

As seen in Figure 3.10 the Velocity Manager driver is located between the Pilot

and the robot, limiting the velocity commands provided to robot when necessary.

Apart from standard position2d interfaces, the opaque:1 interface is used for

transferring data from the Controller to the Velocity Manager. This data is of data

type float, resulting in each value being contained in four bytes to conform with

the opaque interface of Player. In Figure 3.11 the order of the data is presented.

byte 0-3

floatMaxVelocityX floatMaxVelocityY

byte 4-7

floatMaxVelocityA

byte 8-11

FIGURE 3.11: Protocol of the opaque:1 interface.

In addition, the bytes constituting the floatMaxVelocityX are used for in-

dicating whether the velocity should be limited or not. If the value of

floatMaxVelocityX is −1, the velocity is not limited.

One of the results presented in the robot behaviour analysis of Section 2.3.7,

60 3.4. Human-Robot Interaction

is that the robot velocity should be decreased when approaching a person. This

is implemented by use of the Hall zones described in Section 2.3.7. The specific

velocity of each zone has been chosen as outlined in Table 3.1.

Hall zone Max. velocity [m
s]

Public 1

Social 0.4

Personal 0.2

Intimate 0.1

TABLE 3.1: Maximum velocities to be maintained by the Velocity Manager.

The velocities depend upon the Hall zone in which the robot is currently

located.

Having presented the Behaviour Manager and Velocity Manager, constituting

the Robot Control part of the overall system, the next section addresses the HRI

capabilities of the developed system.

3.4 Human-Robot Interaction

3.4.1 Person Detector

From Section 2.3.4 the objective of the Person Detector is to provide an indica-

tion of whether or not a person is detected, and in the latter case to also provide

motional data of the person. These data consist of a robot frame oriented pose

of the detected person along with the person’s translational velocities. Further-

more, a world frame oriented pose is provided. The reason for not providing the

angular velocity is, that direct measuring of a person’s heading is not possible in

the current set-up. Thus, the heading can only be calculated based on measured

velocities. Consequently, detection of a person’s heading while he/she is turning

on the spot is currently not supported. Instead, the angular velocity is used for

signalling whether a person has been detected or not.

The Person Detector utilizes marker detection by use of the cmvision driver

along with range finder readings as seen from Figure 3.12.

Chapter 3. Design and Implementation 61

Robot driver

Range finder driverVelocity Manager

Pilot

[vfh]

Navigator

[wavefront]

Behaviour Manager

Localizer

[amcl]

Map

Person Detector

Blob finder

[cmvision]

Controller

position2d:0

position2d:4

position2d:1

position2d:3

planner:0

laser:0 laser:0

laser:0

blobfinder:0

position2d:2

localize:0position2d:2

map:0

position2d:0

camera:0

opaque:0

opaque:1

position2d:5

position2d:6

position2d:0

FIGURE 3.12: Overall system structure where the Person Detector and all

connected functionalities are highlighted.

Estimating position and heading

The approach of acquiring a detected person’s position is illustrated in Figure

3.13. To estimate the position, the proper placement of the person in the range

finder Field Of View (FOV) needs to be determined. Therefore, the angle θrf

must be identified, by first determining in which part of the image received from

the camera, the centre of the largest detected blob is situated. Hereafter, from the

fact that the camera FOV has been measured to be 25◦, θrf can be calculated from

knowledge of the range finder FOV, resolution and sample count.

Having identified the correct laser sample to read and calculated the position

of the person relative to the robot, the position must be rotated by θ and displaced

by pr, in order to also be represented in world co-ordinates.

When the position of the detected person is known in both the robot frame

(xr,yr) and the world frame (xw,yw), it still remains to estimate heading and trans-

lational velocities. As stated above these parameters are closely related, since the

heading of the detected person is calculated from monitoring his/her movement.

62 3.4. Human-Robot Interaction

θrf

Range Finder

FOV

Camera

FOV

yr

xr

yw

xw

θ

0°

180°

25°

pr

FIGURE 3.13: The basic approach for the Person Detector algorithm. Note,

that the camera FOV has been exaggerated for illustrative purposes.

Chapter 3. Design and Implementation 63

Thus, from calculating the translational velocities by differentiation of estimated

positions, the heading of the person is estimated. Such estimation of the heading

clearly requires the person to be moving, and furthermore requires decisioning on

whether movement is actually occurring or simply caused by sensor noise. The

latter has been accounted for by introducing movement thresholds. Furthermore,

when calculating the person’s velocity and heading in the robot frame, it must be

taken into account, that the robot’s motion also contributes to changes of the per-

son’s position in the robot frame (See Figure 3.14). This is handled, by calculating

the change in robot position from received odometry information between the

samples of the person position. The contribution from the robot velocity to the

person velocity is then eliminated to yield the resulting person velocity relative

to the current robot frame. The person’s velocity relative to the latest robot frame

is given by transforming the person’s position in the prior robot frame into a po-

sition in the current robot frame and subtracting this from the current position.

Using the notations of Figure 3.14 yields:

R2y

R2
x

Wy

W
x

R1
y

R1x

R1

R2

P1

P2

θ2

θ1

FIGURE 3.14: When both the robot and the person moves, calculating the

person’s velocity in the robot frame, necessitates elimination of the

contribution from the robot’s velocity.

R2vp =R2 P2 −R2 P1 (3.4)

R2vp is the person velocity relative to the robot frame R2.
R2P2 is the person position P2 relative to robot frame R2.
R2P1 is the person position P1 transformed into co-ordinates relative to robot

frame R2 using the following transformation:

64 3.4. Human-Robot Interaction

R2P1 = Rot(θ∆R) (R1P1 −R1 R2) (3.5)

Rot(·) is the rotation given by

[
cos(·) sin(·)
− sin(·) cos(·)

]
θ∆R is the angular difference between robot frames R1 and R2 in world co-

ordinates (θ∆R = θ2 − θ1 on Figure 3.14).
R1R2 is the co-ordinate of the origin of robot frame R2 relative to robot frame R1

and is calculated by using the following expression:

R1R2 = Rot(W θR1) [x∆R y∆R]T (3.6)

W θR1 is the angular displacement of the robot frame R1 in world co-ordinates.

x∆R and y∆R are the differences in x and y co-ordinates between the robot frames

R1 and R2 relative to the world frame. This difference is calculated based on

odometry information received from the robot through its position2d interface.

Having calculated the person’s velocity, the heading of the person relative to

the current robot frame can now be determined. If the person has moved, the

heading is calculated based on the velocity vector by using the arctan function. If

the person has not moved, the heading is calculated by adding the angular differ-

ence θ∆R between the prior and the current robot frame to the person’s heading

in the prior robot frame.

Detection limitations

Person Detection based on blobs may be challenging, due to changes in the light

of a real-world test environment, blobs can indeed appear when no person is

present. No measures have been incorporated to counter this phenomenon. A

solution to the problem could be to compare range finder readings with the map

of the given environment. Changes in light can also appear when a person is in

sight of the robot. This has been countered by always making the Person Detector

perceive the largest detected blob as a person. It should be emphasized, that this

is merely a simple rectification, based on the fact that blobs caused by changes in

light often appear as small fragments, unless the change is widespread. Again,

Chapter 3. Design and Implementation 65

more thorough remedial measures involve either map comparison or possibly

dynamically changing detection thresholds based on the amount of light in the

camera images received.

3.4.2 Person Evaluator

Provides

Parameters for the final case description

Parameters for the Behaviour Manager

Requires

Motion data of detected person

TABLE 3.2: Interfaces of the Person Evaluator

The Person Evaluator represents the robot’s ability to judge the detected per-

son’s reaction to the robot’s own motion pattern. Thus, the Person Evaluator

enables the robot to actively participate in the observation of a detected person,

and thereby strengthen the judgement of whether the person is interested in an

encounter or not. The Person Evaluator is only intended to be active when the

robot is in front of the person.

Based on studies of human behaviour [Garcı́a-Rojas et al., 2006], the Person

Evaluator algorithm is based on the fact that if a person A is interested in a close

encounter with another person B, he would undoubtedly approach this person

in a straightforward manner. On the contrary, if in no interest of closer contact,

person A would carefully avoid the path of person B. Although the robot is not

perceived as a human being when encountering people, it is assumed that the

human behavioural reactions are the same, or at least very alike.

Since the net direction of the robot is presumed to always be targeted on the

detected person while evaluating, the developed algorithm solely focuses on the

motional changes of the detected person. The basic idea of the algorithm is illus-

trated in Figure 3.15.

As seen from the figure, the features chosen to characterize the behaviour of a

person is the projected vector vpers,proj , and the area of the triangle spanned by the

person’s velocity vector vpers and the vector between the robot’s and the person’s

66 3.4. Human-Robot Interaction

Aeval

vpers

vpers,proj

Case 1

Case 2

drp

Case 3

vpers

drp

vpers,proj

FIGURE 3.15: The basic element of the Person Evaluator algorithm, being the

calculation of the spanned area Aeval and the projected vector vpers,proj .

Chapter 3. Design and Implementation 67

current position drp. Starting from the projected vector vpers,proj , this feature can

tell whether the person is actually moving towards the robot or not, i.e. a negative

projection relative to the person’s heading would imply a velocity vector of the

person vpers directed away from the robot (see Case 3 on Figure 3.15). A person

moving away from the robot, will undoubtedly suggest that the person is not

interested in encountering the robot. The reason for calculating vpers,proj instead

of simply using the direction of vpers is that further information on the person’s

movement is extracted. Thus, comparing vpers,proj to the distance |drp| between

the robot and the person, indicates the net velocity of the person towards the

robot (see Case 1 and 3).

If a person is indeed moving towards the robot, the calculation of the area

Aeval as represented in all three cases on Figure 3.15 becomes relevant. The area

provides a good indication of how interested the person is in encountering the

robot. The smaller the area, the more interested the person is. However, as illus-

trated by the three cases on Figure 3.15 the information provided by the size of

the area spanned, must be interpreted by taking the distance |ddist| into consid-

eration. The more apart the robot and person is, the less value the area provides.

Studying Case 2 in the figure, the person’s reaction is less certain to be caused by

the movement of the robot, and thus the large area spanned should somehow be

weighted according to the distance between robot and person. To overcome this

problem, measures have been taken in the CBR solution of the Trainee described

in the following section.

3.4.3 Trainee

It has been chosen to implement the CBR solution using a MySQL database.

Therefore, due to the Controller being developed in C++, the CBR implemen-

tation has been carried out using MySQL++, a C++ wrapper for MySQL’s C API.

This wrapper is built upon Standard Library Template (STL) principles, meaning

that the task of handling the database, is basically like dealing with STL contain-

ers as e.g. vectors and lists [Tangentsoft, 2007]. The following treats the choice of

the actual case contents as well as the method by which encountered cases will

be handled.

68 3.4. Human-Robot Interaction

Defining a case

As stated in Section 2.3.5, the task of specifying a case is a question of determining

a distinct and representative set of features connected to the event of a robot-

human encounter. The more relevant features extracted, the more specific the

robot experiencing can be made towards the various person encounters. Hence,

the outcome of the Person Evaluator, being the spanned area between the velocity

vector of the person and the vector between the person and the robot, is a natural

choice for inclusion in the case description along with the distance at which the

area is recorded. The chosen features are listed below:

Distance

Recording the distance to the person, allows the robot to relatively evaluate

the related spanned area. As mentioned in Section 3.4.2, a large spanned

area at a great distance, does not contain as much person behavioural infor-

mation as one recorded close to the person.

Values: Distances with a precision of two decimals governing the Personal

and Social Zones as designated by Hall.
Spanned area

As mentioned above, the spanned area is the calculated outcome of the Per-

son Evaluator, containing information on how directly the person and robot

are approaching each other.

Values: Calculated area spanned by person’s velocity vector and the vector

between person and robot.
Position

Having detected a person, the robot must estimate his/her position in the

environment. This information is recorded in order for the robot to learn if

people exhibiting the same kind of behaviour, are most likely to be encoun-

tered in certain areas.

Values: The position of the person is represented by an x and y position in

meters, with a precision of one decimal.
Time of day

By recording the time of day upon detecting a person, the robot can gradu-

ally become aware of possible similarities between the solution outcome i.e.

whether assistance is needed or not and the associated time of day.

Chapter 3. Design and Implementation 69

Values: The time of day is represented by an unsigned integer value. A

total of six periods have been selected as representative for a normal work

day:

• 0: Morning rush hour (06:00-09:00)
• 1: Late morning (09:00-11:00)
• 2: Lunch (11:00-13:00)
• 3: Afternoon (13:00-15:00)
• 4: Work day end (15:00-17:00)
• 5: Evening (17:00-23:00)

Type

In an ideal setting, the robot should be able recognize every person it has

previously tracked in a given environment and identify certain character-

istics about them. Such knowledge would enable the robot to e.g. see if a

person it has previously judged as exposing an uninterested behaviour and

therefore chosen to ignore, is still around. Furthermore, being able to e.g.

distinguish between children and adults, would provide the robot the abil-

ity to e.g. always encounter children no matter their exhibited behaviour.

Values: Although this feature has been included in the software design, it

has not been implemented in the final solution tested in Chapter 4.

From the above description of the features to include in the case representation,

the following section treats the actual implementation of the Trainee sequence of

events constituting the CBR solution.

Looking up a case

Due to the active participation of the robot in evaluating a detected person, the

method for looking up cases should somehow be able to govern the dynamics

of the Person Evaluator outcome over a period of time. Thus, limiting the case

lookup to a single case during encountering would be an inadequate solution.

The method developed to overcome this problem is illustrated in Figure 3.16.

As seen from the figure, the robot begins to perform temporary case lookups

when it has reached a distance to the person of 3.6 m, equivalent to the intersec-

tion between the Personal and Social Hall zones. Hereafter, case lookups will be

70 3.4. Human-Robot Interaction

0.5 0.6 3.6

Temp. case storage

[m]
0.7

FIGURE 3.16: The developed method for looking up cases during an

encounter. All temporary cases will be stored, until an outcome of the

encounter is known. At this point, the cases will be altered accordingly,

stored in the main case database, and finally the temporary case database

is emptied.

Chapter 3. Design and Implementation 71

performed according to a quantization of the distance into steps of 10 cm. This

limit in precision has been introduced to set a boundary for the inevitable con-

tradiction of whether the robot should create new cases, or make choices from

past experiences. Moreover, it is deemed reasonable not to judge the behaviour

of a person too frequently, since behavioural reactions would be more difficult to

detect.

Since multiple lookups are required during person evaluation, two distinct

databases are used. One serving as the main case library, the other functioning

as storage when performing temporary case lookups. The two databases are

described more thoroughly in the following:

72 3.4. Human-Robot Interaction

Main database

Stores all experiences of the robot and thus functions as the main lookup

database. The database table contains the columns as described in Figure 3.17.

case_id dist area pos_x pos_y time_of_day type indication

FIGURE 3.17: The columns contained in the main database table.

Compared to the case features outlined in Section 3.4.2, the fields case_id and

indication are new. The case_id is merely a result of the MySQL implemen-

tation, being the primary and auto-incremental key of the main database. The

indication field is introduced in order to store the probability or indication of

the detected person’s interest to interact.

Temporary database

Used during person evaluation. Cases recorded during encountering will be tem-

porarily stored in this database, for later to be evaluated and transferred to the

main database. These actions call for new fields to be introduced in the temporary

database table as illustrated in Figure 3.18.

case_id dist area pos_x pos_y time_of_day type editindication stored_id

FIGURE 3.18: The columns contained in the temporary database table. The

highlighted fields are those different from the main database.

These new fields are used when a case match is found in the main database. In

these situations, the case will be copied to the temporary database and marked

with the value 1 in the edit field indicating, that it should be updated and not

created during case revision. The stored_id field is used to store the case_id

value of the matching case in the main database in order to be able to locate the

case again, when the outcome is known.

Thus, a typical course of events is, that the robot detects a person, and (while

approaching and evaluating the person), stores a case for every ten centimetres

difference in travelled distance between robot and person. Whenever an outcome

of the encounter is known, the temporary cases must be evaluated and afterwards

erased. Thus, the derived method can be divided into two being retrieval/reuse

and revision/creation to be described in the following.

Chapter 3. Design and Implementation 73

Case retrieval and reuse When looking up a case in the main database, two

possible scenarios can occur:

• No match: The currently faced case is stored directly into the temporary

case database. The value of field indication is set to the default value of

0.5, indicating that the robot should, as default, perceive the person as being

interested in an encounter.

• Match: The existing case is copied to the temporary case database, for later

alteration of its indication when an outcome is known, i.e. during case re-

vision. The temporary case database fields of edit and stored_id are used

when a matching case has been found.

When searching for cases in the main database, rules must be set up in order

for the robot to be able to identify certain parameters from others. Comparing

cases by simply taking the average of all parameters would undoubtedly intro-

duce errors in the case retrieval, since some cases would have more influence

than others due to e.g. differing units or person behavioural judgement value.

The case retrieval has been implemented by exploiting the query features of

MySQL. Studying the code excerpt of Code 3.2, line 2-4 indicates a database

lookup from the main case library stored_cases. Note, that the SELECT command

selects the case_id along with a customized field area_diff calculated as the dif-

ference between the area of the given stored case and that of the temporary case

currently revised. This selection of data is followed by the MySQL syntax of WHERE

, indicating that certain restraints governs the data lookup. As seen from lines

5-9, a case match will only be made if an existing case holds the same data as the

temporary case in the fields: distance,pos_x, pos_y,time_of_day and finally type.

If one of these fields contains different data, the temporary case will instead be

treated as a new case and stored in the main database accordingly. Turning to

the final MySQL instruction of line 10, all cases found to match the current tem-

porary case will be returned in ascending order, meaning that the case with the

largest area difference i.e. area_diff will be first. Hence, if the difference exceeds

a specified threshold value, the temporary case will again be stored as a new case,

while a smaller difference will result in a case revision of the stored case.

74 3.4. Human-Robot Interaction

1 query <<
2 "SELECT case_id,"<<

3 "ABS((area-’"<<ptrCase->get_floatSpannedArea()<<"’)) AS area_diff"<<

4 "FROM stored_cases"<<

5 "WHERE distance=’"<<ptrCase->get_floatDistance()<<"’"<<

6 "AND pos_x=’"<<ptrCase->ptrPositionData.get_floatPoseX()<<"’"<<
7 "AND pos_y=’"<<ptrCase->ptrPositionData.get_floatPoseY()<<"’"<<
8 "AND time_of_day=’"<<ptrCase->get_intTimeOfDay()<<"’"<<
9 "AND type=’"<<ptrCase->get_intType()<<"’"<<

10 "ORDER BY area_diff ASC"<< endl;

11 res = query.store();

CODE 3.2: MySQL++ code excerpt outlining the method used for retrieving
cases from the main database during person evaluation.

Case revision and creation Imagine that the robot has completed a person eval-

uation, and that the temporary case database, as a result of the performed case

lookups, holds a given amount of cases. Whether the person evaluation has

ended because of the person being evaluated as not interested or as a result of

conducted communication, the robot should now revise all of the temporary

stored cases. Thus, some cases should be created in stored_cases, while oth-

ers should be used in updating existing cases. Either way, the temporary case

database field of indication is updated during revision according to the expe-

rienced outcome. As indicated in Section 3.4.2, this alteration should be consid-

ered in relation to the distance to the person associated with the case. The further

away, the less the indication value due to the person’s reaction towards the robot

naturally being strengthened the closer he/she is to robot. Such weighted al-

teration has been implemented utilizing the behavioural zones as designated by

Hall. Two weight functions have been derived and illustrated in Figure 3.19.

As seen from the figure, the weight on the person indication will increase as

the distance between robot and person decreases. Furthermore, having entered

the Personal Zone of the detected person, the weight function shifts resulting in

a radical increase in weight according to distance.

When updating the indication value during revision, a variable

intLearningRate has been implemented to allow for adjustment of the rate

Chapter 3. Design and Implementation 75

0,5 1 1.2 1,5 2 2,5 3 3.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance to person [m]

W
ei

gh
t

Personal zone Social zone

FIGURE 3.19: The weight function governing the Personal and Social Zones

respectively, introduced, in order for the robot to pay more attention to the

reactions of the detected person, the closer he/she is to the robot. Note that

the limits on the distance-axis reflects the social distances according to

Hall. Thus the minimum distance signifies the transition from the

Personal Zone to the Intimate Zone, never to be entered by the robot.

76 3.4. Human-Robot Interaction

by which the robot learns from the experienced outcomes. Thus, the lower the

learning rate, the less effect the weighing will have.

Having described the implementation of the Trainee, the following section

treats the development of the Controller client, tying all developed modules to-

gether.

Chapter 3. Design and Implementation 77

3.5 Controller

3.5.1 Controller development

As described in Section 2.4, the objectives of the Controller are to:

• Embody a Player client,

• Act as a state supervisor, e.g. the Person Evaluator should only be active at

certain times in the operation cycle of the robot.

• Incorporate the functionalities of the Person Evaluator, Trainee and Com-

municator.

Furthermore, it has been decided to include a GUI in the Controller design.

Targeted on the phase of implementation and test, the Graphical User Interface

(GUI) allows for parameter and robot state surveillance. Since the introduction

of the GUI in the Controller implementation is caused by a desire of monitoring

certain variables of the system during debugging and testing, no further details

will be included on this part of the Controller solution.

In the following, some parts of the Controller design will be treated more

briefly than others, e.g. not all class procedures and attributes will be described

in the text. If more information is needed than those included, refer to Annex 2

where the full documentation of the Controller is available in HTML format.

3.5.2 Player client

The libplayerc++ client library functions as a so-called “service proxy” model

[PlayerProject, 2006]. Hence, the client is implemented by including objects func-

tioning as proxies for remote services, i.e. the services provided by the initiated

Player server(s). Thus, developing a client for Player is merely a question of de-

ciding which proxies to use and to develop associated callback functions.

The proxies needed maintained by the Controller, in order to provide and re-

ceive the necessary data are listed in Table 3.3. Furthermore, the functionality

subscribed for, and the nature of the conducted communication is included along-

side the proxies.

78 3.5. Controller

Proxy Connected functionality Communication

LocalizeProxy Localizer Receive

PlannerProxy Navigator Provide/Receive

Position2dProxy Person Detector (robot frame) Receive

Position2dProxy Person Detector (world frame) Receive

OpaqueProxy Behaviour Manager Provide

OpaqueProxy Velocity Manager Provide

IrProxy Communicator Receive

TABLE 3.3: Proxies maintained by the class RobotClient in order to

communicate with active Player servers.

By maintaining these proxies the Controller is able to carry out necessary rou-

tines using the callback procedures as listed in the class RobotClient in Figure

3.20.

The above listed procedures are briefly described below.

Chapter 3. Design and Implementation 79

callbackLocalizer

Receives information on the current amcl driver status, i.e. the estimated

position and the likelihood of its certainty through the LocalizerProxy.

callbackNavigator

Designates navigational targets through the PlannerProxy if active, and

receives feedback on whether an appointed target is valid, or if the robot

has reached it.

callbackPersonDetector/callbackPersonDetectorWorld

Receives information through the two Position2dProxy interfaces, on

whether any person is detected, and if so receives the position of the

detected person both in the robot frame and world frame.

callbackCommunicatorIR

Receives input from the Robotino® IR sensors during person interaction, in

order to determine the answer provided by the person. Note, that since this

feature is essentially the task of the Communicator, this particular function-

ality will not be treated further.

A libplayerc++ client is started by creating its own individual thread. Thus,

when a message is received from the server, the client fires the associated callback

procedure handling the received message. Consequently, communication with

underlying Player server(s) will constantly be maintained, regardless of the main

Controller thread’s current state of execution.

Having described the class RobotClient, the following section threats the state

supervisory role of the Controller.

3.5.3 State supervision

In Section 2.4.1, the states and conditions for state transitions were determined.

Since all of the conditions depend on both information received from the robot,

and on the implemented functionalities in the Controller, it has been decided to

include the state supervisory control in the main class Controller, while stor-

80 3.5. Controller

+callbackLocalizer(PlayerCc::LocalizerProxy* ptrLocalizeProxy)

+callbackNavigator(PlayerCc::NavigatorProxy* ptrPlannerProxy)

+callbackPersonDetector(PlayerCc::Position2dProxy* ptrPosition2dProxy)

+callbackPersonDetectorWorld(PlayerCc::Position2dProxy* ptrPosition2dProxyWorld)

+callbackCommunicatorIR(PlayerCc::IrProxy* ptrIrProxy)

+player_opaque_data_t * assembleBMDataPackage(PlayerCc::OpaqueProxy* ptrOpaqueProxy)

+player_opaque_data_t * calculateMaxVelocities(PlayerCc::OpaqueProxy* ptrOpaqueProxy)

RobotClient

FIGURE 3.20: The RobotClient class of the Controller. Note that

constructor/destructor procedures have been omitted.

StateSupervisor

-intSystemState-intMode

Controller

FIGURE 3.21: The main class Controller covering the supervisory control

and the class StateSupervisor holding the current state in

intSystemState. The intMode attribute provided to the Controller

represents user input, on whether the Controller should be executed in

real-world test mode or in simulation mode. Note that standard

procedures, constructor/destructor and attribute get/set procedures, have

been omitted.

ing the current state in the class StateSupervisor attribute intSystemState (see

Figure 3.21).

As seen from the figure, the class Controller only includes one attribute be-

ing the intMode. This attribute represents user input from the GUI, determining

whether the Controller should be executed in real-world test mode or in simu-

lation mode. Such selection of execution mode have been included in order to

allow for more easy and rapid simulation, by generating person answers instead

of requiring the simulation supervisor to somehow affect the robots IR sensors as

required in a real-world scenario (see Section 2.3.6). Therefore, three simulation

modes have been established, covering the person behaviours of being interested,

not interested and randomly interested.

Chapter 3. Design and Implementation 81

Since the real-world Communicator functionality is actually handled

through the IrProxy of the class RobotClient, the Communicator functional-

ity during simulation has been included in class Communicator through the

interactWithPerson() procedure. The Communicator class is depicted in Figure

3.22.

+int interactWithPerson(int Mode)

Communicator

-intReply

FIGURE 3.22: The class Communicator which is only applicable, when the

Controller is executed in simulation mode due to the real-world

communication being handled in the class RobotClient. Thus, generated

replies are stored in the intReply attribute. Notice, that standard

constructor/destructor procedures have been omitted in the class

description.

Having described the main class Controller with focus on its primary func-

tionalities, the following section outlines the entire Controller structure.

3.5.4 Controller structure

All the above described parts of the Controller, along with those not treated in

detail are gathered in the overview class diagram of Figure 3.23.

Starting from an overall system point of view, the Controller has been di-

vided into two separate threads, implemented by utilizing the Boost C++ libraries

[Boost, 2007]. These two threads cover the main Controller application and

the GUI (class GraphicalUserInterface) respectively. Consequently, the GUIData

class has been included to act as a data container allowing data exchange between

the two threads.

The fact that the Controller is acting as an interconnecting unit for local and

underlying drivers, requires storage of information concerning the robot and the

detected person. Studying the class diagram of Figure 3.23, two classes, namely

the Person and Robot have been introduced, acting as primary data containers for

all such information. Starting from the class attributes, the classes are treated in

the following:

Person

82 3.5. Controller

+intMode()

Controller

Case

-intTimeOfDay

-intType

-floatSpannedArea

-floatDistance

EmotionalStateMonitor

-charEmotionalState

+on_buttonStart_clicked()

+on_buttonQuit_clicked()

+updateTextData()

GraphicalUserInterface

-classGladeReference

+detectFaults()

+handleFaults()

FaultHandler

-boolFaultDetected

-intFaultType

GUIData

+classInterprocessMutex

+boolDataInSharedMemory

+boolStartApplication

+boolQuitApplication

+floatRobotPoseX

+floatRobotPoseY

+floatRobotPoseAngle

+boolPersonDetected

+floatPersonPoseX

+floatPersonPoseY

+floatPersonPoseAngle

+uintSystemState

+intMode

+floatIndication

+intCommunicatorReply +setPoseData()

+getPoseData()

+setVelocityData()

+getVelocityData()

MotionData

PoseData

-floatPoseX

-floatPoseY

-floatPoseAngle

VelocityData

-floatVelocityX

-floatVelocityY

-floatVelocityAngle

StateSupervisor

-intSystemState

+generateTarget()

TargetProvider

-boolValidTarget

-intStateTarget

General Person related Robot related

Commonly related

+evaluatePerson()

PersonEvaluator

+setDesiredLocation()

+getDesiredLocation()

+setPoseWorld()

+getPoseWorld()

+setMotionDataPose()

+getMotionDataPose()

+setMotionDataVeloctiy()

+getMotionDataVelocity()

Person

-intType

-boolToBeEvaluated

-boolHasBeenEvaluated

-floatIndication

-intReply

-intID +setMaxVelocity()

+getMaxVelocity()

+setBaseLocation()

+getBaseLocation()

+setDestination()

+getDestination()

+setMotionDataPose()

+getMotionDataPose()

+setMotionDataVeloctiy()

+getMotionDataVelocity()

Robot

-floatPosotionCovariance

-boolTargetReached

-intTimeOfLastDetection

-floatVoltage

+interactWithPerson()

Communicator

-intReply

+callbackLocalizer()

+callbackNavigator

+callbackPersonDetector()

+callbackPersonDetectorWorld()

+callbackBehaviourManager()

+callbackVelocityManager()

+callbackCommunicatorIR()

+assembleBMDataPackage()

+calculateMaxVelocities()

RobotClient

+retrieveCase()

+reviseCase()

+resetCaseDatabase()

Trainee

-intLearningRate

FIGURE 3.23: Complete class diagram of the developed Controller. The

General column contain system-wide related classes, while the columns of

the Robot and Person contains similar related classes. The Commonly

related section contains blueprint classes, used in all depicted get/set

procedures. Greyed out elements have been part of the design process, but

not included in the current implementation.

Chapter 3. Design and Implementation 83

boolToBeEvaluated

Having detected a person, the Behaviour Manager is invoked at once,

while the Person Evaluator should only be invoked when certain, that

the person is heading towards the robot. When this has been verified

from the Person Detector, boolToBeEvaluated is set to true allowing the

Person Evaluator to be invoked.
boolHasBeenEvaluated

The boolHasBeenEvaluated is set to true, the moment the Person

Evaluator is initiated, and set to false whenever the person is out

of sight. Combining the logical values of boolToBeEvaluated and

boolHasBeenEvaluated, the Behaviour Manager should only be dis-

abled whenever the following expression is true:

!boolToBeEvaluated && boolHasBeenEvaluated

This way, the Behaviour Manager will be disabled if the Person Evalu-

ator has judged the person to be uninterested, although he/she is still

detectable by the camera on the robot.
floatIndication

Holds the value of person interest indication obtained through the con-

tinuous case database lookups during person evaluation. As described

in Section 3.3.1, the floatIndication is used in the Behaviour Manager

to adjust the motion of the robot.
intReply

Upon initiating communication with a detected person, the reply,

whether generated in simulation or received through the RobotClient

::callbackCommunicatorIR, is stored in the intReply attribute.
intID

Included in the design progress to function as an identification label,

in case the robot is to detect multiple persons in an environment. This

attribute has not been implemented.
intType

Intended to make the robot capable of distinguishing between certain

types of person. This would e.g. enable the robot to distinguish the

cleaning lady from a visitor, allowing for more seamless robot integra-

tion in a given environment. This attribute has not been implemented.

84 3.5. Controller

Robot

floatPositionCovariance

Whenever the RobotClient::callbackLocalizer() is invoked, the re-

ceived data is processed in order to isolate the best pose estimate,

as well as its associated confidence level. The latter is stored in the

floatPositionCovariance.
boolTargetReached

If a target has been set for the robot to reach, the boolTargetReached

attribute is set to true the moment the robot reaches its destination.
intTimeOfLastDetection

Having considered the parameters affecting the mood and behaviour

of the robot in the design process, the intTimeOfLastDetection is in-

cluded as an indicator of the robot’s level of frustration. By example,

the longer the time passed and not meeting any people, the more frus-

trated the robot should get. This attribute has not been implemented.
floatVoltage

This attribute was included in the design process to enable the Con-

troller to determine when the robot should return to base. The

RobotinoCom API provides functions for receiving the current battery

status. This attribute has not been implemented.

Having described the main storage classes of the Controller, the follow-

ing treats the general functioning of the Controller as seen from the classes

RobotClient, Controller and Person Evaluator. These three classes represent

the main functionalities of the Controller being communication, overall system

control, and human-robot interaction. The description aims at explaining the

most important attributes and procedures included in the class overview dia-

gram of Figure 3.23.

RobotClient

As mentioned earlier, the RobotClient handles all communication with

active Player server(s). Much of the information received is stored in the

Chapter 3. Design and Implementation 85

storage classes Robot and Person described above. Apart from these, the

RobotClient updates the position and velocity of the person and robot

through the procedures Robot::setMotionDataPosition() and Robot::

setMotionDataVelocity(). Furthermore, the person’s position in the world

frame is set by Person::setPositionWorld(), while the maximum allowed

robot velocity allowed is updated by use of the Robot::setMaxVelocity().

Controller

When invoking the Controller application, the robot starts to roam the en-

vironment looking for persons to evaluate. The roaming behaviour is ob-

tained through the class TargetProvider, offering the generateTarget()

procedure which calculates targets for the robot to follow. All robot targets

are stored using the Robot::setDestination(). The class TargetProvider

::generateTarget() is also invoked when the robot should guide the

person or return to base. The person’s goal is updated by Person::

setDesiredLocation(), while the base location is altered using the Robot

::setBaseLocation() procedure.

Mentioned in Section 3.5.3, the Controller functions as the nodal centre

of the Controller. It controls the state of the system, and stores the current

state in StateSupervisor::intSystemState(). Furthermore, though not

implemented, the StateSupervisor is to provide the current state to the

EmtionalStateMonitor, designed to control the mood/behaviour of the

robot.

PersonEvaluator

Upon detection of a person heading in the direction of the robot,

the PersonEvaluator::evaluatePerson() procedure is invoked. The

PersonEvaluator is furthermore associated with the following classes:

• CaseDatabase - containing the CBR implementation
• Case - the blueprint for newly generated cases
• Communicator - generating replies when the Controller is executed in

simulation mode.

86 3.5. Controller

During person evaluation, a case object of class Case is constantly updated

with the most recent values, and used in the continuous case database

lookups performed using the CaseDatabase::retrieveCases() procedure.

Whenever the Person Evaluator reasons that the person is not interested,

e.g. if moving out of sight or by communicating, PersonEvaluator::

reviseCases() is fired. As described in Section 2.3.5, this procedure per-

forms a clean-up of the temporary case database, updating the indication

fields according to the experienced outcome. Furthermore, useful cases are

stored in the main case database.

The above description of the Controller concludes the Design and Implemen-

tation chapter. The following chapter treats the conducted system experiments

and comments on the obtained results.

CHAPTER 4

Experiments and Results

Having developed a system solution providing the Robotino® with the function-

alities described in Section 1.2, this chapter treats the experiments conducted in

order to validate the overall functionality. Starting from the overall objective of

the developed system, the robot should be able to:

• Localize itself an a given environment.
• Roam the environment while keeping track of its own location.
• Approach and interact with a detected person taking into account the effect

of robot behaviour on the person.
• Guide the person to a desired location.

Some of the listed test objectives are a necessity for others to function, and will

thus not be tested separately. When applicable, comments will be made on which

objectives are implicitly tested. Furthermore, it seems natural to divide the test

into the above three categories, i.e. before, during and after encountering a per-

son. However, before treating the individual experiments, the data acquisition,

which is common for all tests, will be described.

4.1 Data acquisition

Generally, the tests will be conducted in both a real-world and in a simulation

environment.

When a test is conducted by simulation, the resulting data is easily acquired

through software by writing relevant data to log files. In contrast, testing in a

real-world environment requires certain precautions to be taken, in order to be

able to monitor the planned test. However, some internal robot data which can

not be observed from the outside is still saved in log files. The proposed solution

for acquiring the external data is to survey the test environment using a camera.

Figure 4.1 presents a still picture captured from the installed surveillance camera.

Applying easily distinguishable markings to test subjects and objects, provides

for position data to be extracted from camera recordings. The procedure for such

88 4.1. Data acquisition

FIGURE 4.1: Still picture captured from the camera surveiling the real-world

test environment. Using a wide-angle 4mm lens ensures full test space

coverage.

extraction, has been to initially calibrate the camera using the MATLAB© targeted

Camera Calibration Toolbox1, which outputs both intrinsic and extrinsic camera

parameters. These parameters are subsequently used to correct internal cam-

era characteristics (intrinsic) and to transform (extrinsic) the coordinates of the

markings in the camera frame to world frame coordinates. Data acquired from

calibration along with sample images are included in Annex 5.

4.1.1 Person test subject

Performing the “during encounter” tests, introduces the need for placing a per-

son in the test environment. In order to conduct test in a simulated environment,

a virtual test subject has been created for Stage. The test subject is basically im-

plemented as a robot, where certain characteristics have been changed in order

to simulate the nature of a human being. Furthermore, the virtual person test

subject can be provided both path planning and obstacle avoiding capabilities by

using applying the wavefront and vfh Player drivers, respectively. This becomes

useful when simulating certain human behaviour.

Having described how data is acquired, the following sections concern the

1http://www.vision.caltech.edu/bouguetj/calib_doc/

http://www.vision.caltech.edu/bouguetj/calib_doc/

Chapter 4. Experiments and Results 89

individual tests.

4.2 Before encounter

When the system is initialized, the robot must first and foremost be able to lo-

calize itself in the given environment. Thus, this test is targeted on the Localizer

functionality of the robot, and is carried out to verify the essential localization,

and furthermore to identify possible performance issues. Furthermore, the con-

ducted experiment indirectly verifies the functioning of the developed Robotino®

and range finder Player drivers.

In order to test the Localizer functionality a test scenario have been set up, in

which the robot’s Localizer is provided with an initial pose of (1.5, 1.5, 0), while

the robot actually starts in (0, 0, 0). When set to roam the environment, the robot

must discover that it is currently not situated at the right location, and afterwards

find its true location.

The following performance related parameters are registered during the test:

• Precision of the performed localization.
• Time spent when performing the localization.
• The robot’s perception of the precision of the localization.

During simulation, the precision of the performed localization is monitored by

logging the true pose of the robot along with the estimated pose obtained from

the Localizer. Furthermore, the sample times are logged in order to keep track of

the overall simulation time. The amcl implementation of the Localizer provides

means for monitoring the diagonal elements of the covariance matrix associated

with the most likely pose of the robot. Thus, during testing, the mean of the

pooled position variances will be logged in order to evaluate the robot’s percep-

tion of its pose estimate, while the actual position of the robot is acquired from

camera recordings in real-world experiments.

4.2.1 Results from simulation

The actual initial pose of the robot is (1.5, 1.5, 0), while the robot is told that it is

initially placed in (0, 0, 0).

90 4.2. Before encounter

The actual path of the robot along with the estimated positions of the Localizer

are plotted in Figure 4.2. Thus, it is seen, that the difference between the actual

path and the estimated poses decreases as the robot moves and settles after about

one minute of driving.

-2 -1 0 1 2

-2

-1

0

1

2

[m]

[m
]

0

10

20

30

40

50

60

FIGURE 4.2: Plot of the actual robot path (starting in (0, 0, 0) marked with

x) along with the estimated position of the Localizer (initial pose of

(1.5, 1.5, 0) marked with y). The gradient colour denotes the amount of

seconds passed during robot operation.

To verify, that the Localizer is indeed sure of its final position, Figure 4.3 illus-

trates the evolution of the mean position variance during simulation. Overall, it is

seen, that the variance decreases at the end indicating a high degree of Localizer

certainty on its final position estimate.

Comparing the mean variance plot with Figure 4.2 above, it is seen that dur-

ing the first 20 seconds (the blue colour range) the Localizer is certain of its pose

estimate. Comparing the actual and estimated robot paths, such belief seems rea-

sonable since only a limited amount of environmental features tells the Localizer

otherwise. As described in Section 2.3.1, the amcl driver implementing the Lo-

calizer, only uses a limited set of the entire range of laser readings available. In

this experiment, the default value of 6 readings was used. Therefore, the degree

of environmental features must be relatively high, in order for the Localizer to

Chapter 4. Experiments and Results 91

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

Time [s]

M
ea

n
po

ol
ed

 p
os

iti
on

 v
ar

ia
nc

e
[m

2]

FIGURE 4.3: The mean of the (x, y) position variance of the most likely

Localizer pose estimate. Thus, a small variance indicates a high degree of

precision, while higher values indicates Localizer uncertainty. Compare

with Figure 4.2, to identify the environment locations causing trouble for

the Localizer, i.e. at t ≈ 20.

detect them. This fact explains the sudden increase in the mean Localizer vari-

ance values after about 20 seconds. At this point all laser readings are affected by

the bottom left corner, but the Localizer’s pose estimate should not be obstructed

by anything. This results in an enlargement of the Localizer’s particle cloud to

embody more possible poses, in order to find a better pose estimate than the

one currently provided to the robot. The exact same explanation, applies for the

mean variance decrease after about 42 seconds (corresponding to the light orange

colour in Figure 4.2). However, in this case the difference between the actual and

estimated poses is not as clear as in the case described above.

In conclusion, the fact that the difference between the actual position and the

estimated one decreases with time, and moreover that the degree of certainty in-

creases, indicates that the Localizer functions as intended. In regards to the per-

formance issues of precision and time spent, the above simulation, with a local-

ization time of about 60 s identifies no signs of unacceptable behaviour. However,

since the amcl driver offers a variety of tuning parameters (odometry precision,

range finder sensor model etc.), it seems unreasonable to judge these performance

issues solely on the basis of simulation.

The following section treats the real-world experiments of the robot’s localiz-

ing functionality.

92 4.3. During encounter

4.2.2 Results from real-world test

The resulting plots of the robot’s position during the real-world experiment,

along with the estimated position of the Localizer is presented in Figure 4.4.

-2 -1 0 1 2

-2

-1

0

1

2

[m]

[m
]

0

10

20

30

40

50

60

70

80

FIGURE 4.4: Plot of the actual robot path (starting in (0.0, 0.0, 0.0) marked

with x) along with the estimated position of the Localizer (initial pose of

(1.5, 1.5, 0.0) marked with y). The gradient colour denotes the amount of

seconds passed during robot operation.

Comparing these plots with the pooled variances of Figure 4.5, the exact same

explanations applies as for the simulated case.

In conclusion, the Localizer is seen to enable the robot to perform self-

localization whenever the robot’s perception of its surroundings disagrees with

its stored map of the environment. Regarding the performance of the Localizer,

the real-world test shows no deteriorating signs, and thus no need for further

optimization is deemed necessary.

4.3 During encounter

During encounter, the robot must be able to judge the reactions from a person ac-

cording to the robot’s own movement, in order to determine whether the person

is interested in a close encounter or not.

Chapter 4. Experiments and Results 93

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

Time [s]

M
ea

n
po

ol
ed

 p
os

iti
on

 v
ar

ia
nc

e
[m

2]

FIGURE 4.5: Plot of the mean pooled position variance during real-world

testing. The lower the variance, the more certain is the Localizer of its

current pose estimate.

The test scenario is divided into two test issues, being human-aware naviga-

tion and learning, which will be treated separately in the following.

4.3.1 Human-aware navigation

The human-aware navigation of the robot is tested in both a simulated and in a

real-world setting. Common for both environments, the following scenarios must

be tested:

• Encountered person is interested

– Approach from the front

– Approach from behind

• Encountered person is not interested

– Approach from the front

– Approach from behind

In order to isolate the verification of the robot navigation from influences of

learning capabilities, the person’s indication of interest is held at fixed values

during testing. Thus, in the “interested” case, the indication value is fixed at 1

corresponding to a distribution width of 0.01 and a rotation of 45◦, whereas the

94 4.3. During encounter

indication value of the “not interested” case is fixed at 0.4 corresponding to a

distribution width of 0.25 and a rotation of 0◦ as described in Section 3.3.1.

In all of the above scenarios, the robot must be able to locate the given test per-

son by itself, thus testing the functionality of the Person Detector. Furthermore,

the person test subject must exhibit a motional behaviour matching the actual

case tested for, in order for the Person Evaluator to determine the heading of

the person as described in Section 3.4.1. During testing, the motion of the robot

and the person is recorded in order to verify if the behaviour of the robot is as

intended.

Results from simulation

Results from simulation are presented in Figure 4.6 along with contour plots of

the resulting Behaviour Manager distributions as they are designed to appear at

the end of each test.

In Figures 4.6(a) and 4.6(b), the person initially moves towards the robot, mak-

ing the robot aware that the person faces the robot, resulting in an approach from

the front. In Figure 4.6(a), the person is “not interested” which results in the

robot’s final position being 45◦ relative to the person. As seen, by the underlying

contour plot of the distributions, this final position is as expected, due to the for-

ward distributions (see Section 3.3.1) being rotated 45◦. Furthermore, the robot

keeps a distance of approximately 1.5 m to the person, governed by the local min-

ima of the resulting distribution. In contrast, the case depicted in 4.6(b), in which

the person is “interested”, the robot approaches the person directly, resulting in

a final position in front of the person at a distance of approximately 0.7 m. Again,

the path and final position of the robot are consistent with the rotation and widths

of the forward distributions.

Figures 4.6(c) and 4.6(d), represent the cases in which the person does not

move. Thus, the robot assumes that detected persons are heading the opposite

way of itself (see Section 2.3.4), resulting in an approach from the back. Hence, in

both the “not interested” and “interested” cases, the robot keeps a large distance

to the person, when it is both behind and on the side of the person. Upon reach-

ing a direction of approximately 45◦ relative to the person, the robot approaches

the person. In the “not interested” case of Figure 4.6(c), the robot stops approx-

Chapter 4. Experiments and Results 95

-2

-1

0

1

2

-2-1012

[m]

[m
]

5

10

15

20

(a) Front (person not interested).

-2

-1

0

1

2

-2-1012

[m]

[m
]

0

5

10

15

20

25

30

(b) Front (person interested).

-2

-1

0

1

2

-10123

[m]

[m
]

0

10

20

30

40

50

(c) Back (person not interested).

-2

-1

0

1

2

-3-2-101

[m]

[m
]

10

20

30

40

50

60

70

(d) Back (person interested).

FIGURE 4.6: Results from the simulated human-aware navigation test.

Initial positions of the person and robot is (−1, 0) and (2, 0), respectively.

The blue lines represent the contours of the theoretically calculated

behaviour grid. The path of the robot is depicted by the multi-coloured line

of which the colour gradient represents the elapsed time in relation with

the colour bar to the right of each plot. Arrows indicate the current

heading of the robot and the person.

96 4.3. During encounter

imately 1.5 m from the person, whereas in the “interested” case of Figure 4.6(d),

the robot approaches the person further, ending approximately 0.7 m in front of

the person. In both cases, the path and final position of the robot agree with the

rotation and widths of the distributions.

Results from real-world test

The results of the real-world human-aware navigation experiments are presented

in Figure 4.7.

Generally, the results from the real-world test are very similar to the simu-

lation. However, in the frontal approach cases of Figures 4.7(a) and 4.7(b), the

robot is allowed to move for approximately 50 s before the person moves towards

it. This, more significantly shows the robot altering the approach strategy from

back to frontal.

By comparing Figures 4.7(c) and 4.6(c), a difference between simulation and

real-world is noticed. In the real-world test, the robot does not reach the desired

approach angle of 45◦ relative to the person, before continuing its approach. In-

stead, the robot approaches the person in an angle of approximately 60◦. This

discrepancy is believed to be primarily caused by the non-ideal conditions of the

real-world scenario, combined with the fact that the person is not moving. Hence,

the initial determination of the person’s heading performed by the Person Detec-

tor, seems to deviate from the correct value. Furthermore, the fact that the robot,

while interacting with the person, does not use the Localizer functionality results

in the robot keeping track of its position relative to the person by odometry only.

This will inevitably cause some error. However, due to the fact that an encoun-

tered person is most likely in motion when being approached, the deviation of

15◦ from the desired approach angle seems of minor importance to the function-

ing of the system, since this motion will constantly provide the robot with the

person’s heading.

A general difference between the simulation and the real-world test, is the

robot exhibiting a more rocking motion in the real-world test. This might be

caused by a larger response time of the real-world robot due to e.g. image pro-

cessing and the amount of network communication needed due to the distributed

nature of the system.

Chapter 4. Experiments and Results 97

-3

-2

-1

0

1

2

-1012

[m]

[m
]

10

20

30

40

50

60

70

80

90

100

(a) Front (person not interested)

-3

-2

-1

0

1

2

-1012

[m]

[m
]

10

20

30

40

50

60

70

80

90

(b) Front (person interested)

-3

-2

-1

0

1

2

-1012

[m]

[m
]

20

40

60

80

100

120

140

(c) Back (person not interested)

-3

-2

-1

0

1

2

-1012

[m]

[m
]

20

40

60

80

100

120

140

160

(d) Back (person interested)

FIGURE 4.7: Results from the real-world human-aware navigation test. The

blue lines represent the contours of the theoretically calculated behaviour

grid. The paths of the robot and the person are depicted by the

multi-coloured lines of which the colour gradient represents the elapsed

time in relation to the colour bar to the right of each plot. Arrows indicate

the current heading of the robot and person.

98 4.3. During encounter

Generally, the results of both the simulated and real-world tests are very

promising as they show that the developed behaviour-based navigation algo-

rithm functions as intended. Furthermore the tests show very little difference

between the simulations and the real-world scenario. The results show that the

algorithm can indeed be implemented on a robot functioning in a real-world sce-

nario, with its non-ideal conditions introducing e.g. sensor noise.

Chapter 4. Experiments and Results 99

4.3.2 Learning

Since the robot must be able to learn from its various person encounters, the CBR

feature of the Trainee functionality must be tested separately, to verify its func-

tioning. Testing a CBR solution properly involves a great amount of controlled

repetitions, and thus, the test is carried out by simulation only. In addition to

testing the Trainee functionality, the test will also treat the Person Evaluator func-

tionality, providing some of the data for the Trainee to experience from.

Again, the two test cases of the person being in “interested” and “not inter-

ested” are considered. As described in Section 4.1.1, a virtual test person subject

have been created to, like in the real-world, act differently according to the given

case. This is illustrated in Figure 4.8.

(b)

(a)

Person’s target

Person’s target

FIGURE 4.8: Set-up for testing the Trainee functionality of the robot. In (a)

the person avoids the robot and in (b) the person approaches the robot

illustrating the presumed behaviour of a person when he is “not

interested” and “interested” respectively.

In Figure 4.8(a) the target of the person is fixed, meaning that the person will

avoid the robot and any other obstacles in order to reach the target. This results,

in the person exhibiting a “not interested” behaviour towards the robot. In the

other case, depicted in Figure 4.8(b), the target of the person will at all times be the

position of the robot. This causes the person to approach the robot and thereby

100 4.3. During encounter

exhibit an “interested” behaviour.

The robot is set to initiate communication with the person when it reaches a

predefined distance of 0.6 m from the person. Answers from the person are pro-

vided by the class Communicator of the Controller, being executed in simulation

mode, which generates the proper reply according to the given case of interest

tested for.

In total, three tests are performed each initiated with an empty main case

database, stored_cases (see Section 3.4.3). Furthermore, a high learning rate is

used to make sure that the robot learns relatively fast from its encounters. Details

of the three test scenarios are specified below:

Untrained robot - person “interested” The main case database is cleared. A

training run is performed in which the person is “interested”. This test will

verify if the main case database evolves as intended.
Untrained robot - person “not interested” The main case database is cleared. A

training run is performed in which the person is not interested. This test

will verify whether the main case database evolves as intended.
Trained robot The main case database is cleared. 10 training runs are performed

in which the person is “interested”. 10 training runs are performed in which

the person is “not interested”. One test run is performed in which the per-

son is “interested”. One test run is performed in which the person is “not

interested”. This test will verify, whether the robot makes the right deci-

sions regarding the person interest based on prior encounters.

During the three tests, the motions of the robot and the person are logged along

with the evolution of the main case database (stored_cases).

Results

The two training runs with the untrained robot result in the main case databases

in Table 4.1 and 4.2, respectively. Both of the above tables show that the evolution

of the main case database is as intended. Thus, in the “interested” case of Table

4.1 the indication values increase as the distance decreases. Contrary to this, in

the “not interested” case of Table 4.2, the indication values decrease along with

the distance. This shows, that the robot is able to learn from an encounter, and

Chapter 4. Experiments and Results 101

id distance area pos x pos y indication

1 3.600 0.400 -2.000 0.000 0.500

2 3.400 0.500 -2.000 0.000 0.511

3 3.300 0.500 -2.000 0.000 0.516

4 3.200 0.000 -2.000 0.000 0.521

5 3.100 0.500 -2.000 0.000 0.527

6 3.000 0.000 -1.000 0.000 0.532

7 2.900 0.200 -1.000 0.000 0.537

8 2.800 0.200 -1.000 0.000 0.543

9 2.700 0.000 -1.000 0.000 0.548

10 2.600 0.000 -1.000 0.000 0.553

11 2.500 0.000 -1.000 0.000 0.559

12 2.400 0.000 -1.000 0.000 0.564

13 2.300 0.000 -1.000 0.000 0.569

14 2.200 0.000 -1.000 0.000 0.575

15 2.000 0.000 -1.000 0.000 0.585

16 1.900 0.000 -1.000 0.000 0.591

17 1.800 0.000 -1.000 0.000 0.596

18 1.700 0.200 -1.000 0.000 0.601

19 1.600 0.000 -1.000 0.000 0.607

20 1.500 0.000 0.000 0.000 0.612

21 1.400 0.000 0.000 0.000 0.617

22 1.300 0.000 0.000 0.000 0.623

23 1.200 0.000 0.000 0.000 0.628

24 1.100 0.100 0.000 0.000 0.654

25 1.000 0.000 0.000 0.000 0.679

26 0.900 0.000 0.000 0.000 0.705

27 0.800 0.000 0.000 0.000 0.730

28 0.700 0.000 0.000 0.000 0.756

29 0.600 0.000 0.000 0.000 0.782

TABLE 4.1: The main case database (stored cases) after simulating one

encounter in which both the robot and person were moving. Furthermore,

the person was “interested” as can be seen from the fields of indication

values ranging from the default of 0.5 to 1. Note, that in accordance with

the described weight functions in Section 2.3.5, the values are altered

more extensively, the closer the robot gets to the person.

furthermore, that the robot regards close encounters more credible than encoun-

ters at larger distances. The motion of the person and the robot during the above

test runs is depicted in Figures 4.9(a) and 4.9(c), respectively.

Having verified that the encounters between robot and a person are reflected

in the main case database, the next experiment shows the effect of learning on

the motion of the robot. A total of 20 training runs are performed to train the

robot; 10 in which the person is “interested” and 10 in which the person is “not

102 4.3. During encounter

id distance area pos x pos y indication

1 3.300 0.200 -2.000 0.000 0.484

2 3.200 0.100 -2.000 0.000 0.479

3 3.100 0.000 -1.000 0.000 0.473

4 3.000 0.200 -1.000 0.000 0.468

5 2.900 0.100 -1.000 0.000 0.463

6 2.800 0.100 -1.000 0.000 0.457

7 2.700 0.000 -1.000 0.000 0.452

8 2.600 0.300 -1.000 0.000 0.447

9 2.500 0.300 -1.000 0.000 0.441

10 2.400 0.200 -1.000 0.000 0.436

11 2.300 0.000 -1.000 0.000 0.431

12 2.200 0.200 -1.000 0.000 0.425

13 2.100 0.100 -1.000 0.000 0.420

14 1.800 0.200 -1.000 0.000 0.404

15 1.700 0.100 0.000 0.000 0.399

16 1.600 0.200 0.000 1.000 0.393

17 1.500 0.100 0.000 1.000 0.388

18 1.400 0.100 0.000 1.000 0.383

19 1.300 0.100 0.000 1.000 0.377

20 1.200 0.100 0.000 1.000 0.372

21 1.100 0.100 0.000 1.000 0.346

22 1.000 0.100 0.000 1.000 0.321

23 0.900 0.000 0.000 1.000 0.295

TABLE 4.2: The main case database (stored cases) after simulating one

encounter in which both the robot and person were moving. Furthermore,

the person was “not interested” as can be seen from the fields of

indication values ranging from the default 0.5 to 0. Note that, in

accordance with the described weight functions in Section 2.3.5, the

values are altered more extensively, the closer the robot gets to the person.

interested”. This results, in a main case database with approximately 200 entries.

Using this database as the robot’s experiences of prior encounters, two test runs,

one “interested” and one “not interested”, are performed. The results from these

test runs are depicted in Figures 4.9(b) and 4.9(d), respectively.

Comparing Figures 4.9(a) and 4.9(b), it is seen, that the behaviour of the un-

trained robot and the trained robot in the “interested” case does not deviate sig-

nificantly at large distances. This results from the fact that the robot is not able

to differentiate between “interested” and “not interested” behaviour at large dis-

tances due to the lower weighting of the experiences. Hence, in the trained case

the person interest indication will be close to the default value of 0.5. In contrast,

when the distance reaches approximately 2 m at time t ≈ 9 s (the yellow coloured

Chapter 4. Experiments and Results 103

-2

-1

0

1

2

-1012

[m]

[m
]

0

2

4

6

8

10

12

14

(a) Untrained robot (person “interested”)

-2

-1

0

1

2

-1012

[m]

[m
]

0

2

4

6

8

10

12

(b) Trained robot (person “interested”)

-2

-1

0

1

2

-1012

[m]

[m
]

0

2

4

6

8

10

12

(c) Untrained robot (person “not interested”)

-2

-1

0

1

2

-1012

[m]

[m
]

5

10

15

20

(d) Trained robot (person “not interested”)

FIGURE 4.9: Results from testing the robot’s learning functionality. The

robot’s initial position is (2, 0), whereas the person is initially located at

(−2, 0). In the “not interested” case, the desired goal of the person is

located at (2, 2). The paths of the robot and the person are depicted by the

multi-coloured lines of which the colour gradient represents the elapsed

time in relation to the colour bar to the right of each plot. Arrows indicate

the current heading of the robot and the person.

104 4.3. During encounter

area), the paths of the trained robot and the untrained robot start to deviate. In

the untrained case, the robot starts to reverse while deviating to the right. This

is caused by the forward part of the behaviour grid not being rotated due to the

person interest indication not yet having changed from the default value of 0.5. In

the trained case however, the robot correctly evaluates the person as “interested”

based on the past experiences. Thus, the forward part of the behaviour grid is

rotated, allowing the robot to approach the person frontally.

The case in which the person is “not interested” depicted in Figures 4.9(c) and

4.9(d) shows significant changes in robot behaviour after the training has been

performed. The untrained robot of Figure 4.9(c) assumes that the person is inter-

ested and approaches him until actually preventing the person from continuing

his path towards the goal. However, the trained robot, based on the experiences

stored in database, correctly evaluates the behaviour of the person as “not inter-

ested”. Thus, the robot keeps a large distance to the person allowing him to reach

his goal without robot interference.

A more detailed look at the person interest estimated by the robot is presented

in Figure 4.10.

The figure shows the evolution of the person interest indication of the two test

runs. At first, the indication is fixed at −1 due to the Behaviour Manager not

being invoked. When invoked, it is seen that the interest indication initially is

quite similar in the two tests. This is explained by two person behaviours look-

ing similar to the robot at large distances, along with fact that the credibility of the

robot’s perception of person behaviour being weighted lower at large distances.

As time elapses, the indications evolve differently. In the “interested” case of Fig-

ure 4.10(a), the trend of the indication is increasing while it in the “not interested”

case of Figure 4.10(b) is decreasing. Finally, the indications end close to the val-

ues of 1 and 0, respectively, consistent with the fact that 1 indicates “interested”,

while 0 indicates “not interested”.

Generally, the conducted experiments on the robot’s Trainee functionality

show that the method of CBR implemented in this project, can advantageously

be applied to a robot, which needs to evaluate the behaviour of a person.

Chapter 4. Experiments and Results 105

0 2 4 6 8 10

-1

-0.5

0

0.5

1

Time [s]

In
di

ca
tio

n
[⋅]

(a) Person interest indication (person in-

terested)

0 5 10 15

-1

-0.5

0

0.5

1

Time [s]

In
di

ca
tio

n
[⋅]

(b) Person interest indication (person not

interested)

FIGURE 4.10: The person interest indication estimated by the robot during

the two test runs of a person being “interested” and “not interested”,

respectively. The black line shows the actual indications, while the red line

is smoothed by using a sliding window of 15 samples to illustrate the

trend of the indication evolution. Notice that the indications end close to

the values of 1 and 0, respectively, consistent with the fact that 1 indicates

“interested”, while 0 indicates “not interested”.

106 4.4. After encounter

4.4 After encounter

In order to comply with the robotic context description in Section 1.1, the robot

must be able to guide a person to his/her desired destination, avoiding any un-

known obstacles on its way.

The test is carried out by placing the robot in the test environment along with

an obstacle not included on the map. Providing the robot with a target destina-

tion, and placing the obstacle such that the robot must avoid both known and un-

known obstacles, it remains to record all data on the motion of the robot. During

simulation, motion data are logged to a file, while robot positions are extracted

from the camera recordings in the real-world setting.

The following sections presents the experimental results obtained from the

conducted simulation and real-world testing of the robot’s guiding functionality.

In both environment settings, the robot was provided an initial pose of (1.5, 1, 0)

and a target destination of (−1.5, 1, 90). The obstacle, measuring 0.28 m in diame-

ter was placed in (0.5, 0).

4.4.1 Results from simulation

The results of the simulated test scenario is illustrated in Figure 4.11, showing the

travelled path of the robot.

As described in Section 2.3.3, the Navigator plans routes for the robot in direct

lines. Thus, to avoid the obstacle to the left of the robot’s initial starting point, the

Navigator directs the robot towards the centre of the environment by an interme-

diate way-point, whereafter a direct line can be drawn to the target destination.

However, as seen from the figure, the robot’s path is blocked by the unknown

obstacle in (0.5, 0), and thus the Pilot functionality takes over the control to avoid

the unexpected hindrance.

Having steered clear of the unknown obstacle, the robot resumes to follow the

way-point(s) designated by the Navigator.

Chapter 4. Experiments and Results 107

-2 -1 0 1 2
-2

-1

0

1

2

[m]

[m
]

FIGURE 4.11: Results from the simulated case of the “after encounter”

scenario, testing the robot’s ability to move to a designated target. The

robot’s initial position and target destination are marked with an x. The

arrows along the travelled path of the robot indicates its current heading.

The obstacle is marked with a y.

4.4.2 Results from real-world test

Turning to the real-world case, Figure 4.12 presents the results of the test con-

ducted using the Robotino® robot in a real-world setting.

Comparing with the simulated case, the real-world test shows the exact same

pattern of the Navigator and Pilot exchanging robot control. In the real-world

setting, it is moreover seen that the Pilot first seeks to guide the robot in a counter-

clockwise path around the unknown obstacle, but concludes that the opening

is too narrow, and chooses the clockwise way around instead. Considering the

results presented above, the robot’s capability of guiding a person to a desired

location is functioning as intended.

Having presented the results of the conducted simulations and real-world ex-

periments, the following chapter elaborates on these results, and furthermore on

the project findings in general.

108 4.4. After encounter

-2 -1 0 1 2
-2

-1

0

1

2

[m]

[m
]

FIGURE 4.12: Results from the real-world environment, when testing the

robot’s ability to move to a designated target. The initial position and

target of the robot are marked with an x, while the robot heading is

indicated with arrows along the travelled path. The obstacle is marked

with a y.

CHAPTER 5

Closure

5.1 Conclusion

As described in Section 1.2, the overall objective of this project has been to make

a Robotino® robot capable of navigating in a human environment, and further-

more to target the problem of successful HRI initiation, concerning the initial,

and very important of successfully establishing communication between man

and machine.

A behavioural controlling algorithm has been proposed and validated through

a number of experiments conducted in both a simulated and a small scale real-

world scenario. From the results obtained, the robot shows promising human-

friendly spatial behaviours, complying to the so-called Hall zones known from

prior studies of human-human interaction [Hall et al., 1968]. Furthermore, the

distribution-based nature of the algorithm provides for uncomplicated alter-

ations of the spatial behaviour, if such is desired by future users and developers.

To make the behaviour of the robot intelligent with respect to human be-

haviour, a CBR solution has been developed. This solution, in conjunction with

the behaviour algorithm, enables the robot to distinguish between different hu-

man behaviours, and base its own behaviour on the behaviour of the human. The

developed learning functionality has been verified by simulation experiments

showing that the robot, subject to only a limited training, is indeed able to dis-

tinguish between two human behaviours and base its own behaviour on these.

Furthermore, having based the implementation of CBR on MySQL, offers an easy

accessible API in regards to future development.

Besides from the main contributions, the project work has spawned various

sub-contributions benefiting both the HRI research field as well as future projects

at SAC. Thus, prior to the commencement of this project, no Player driver ex-

isted for the Robotino® platform to make it conform with the Player framework.

Hence, drivers have been developed for the Robotino® as well as for the addi-

tional range finder sensors. The function of these drivers has been verified implic-

itly through the promising results of overall system experiments. Consequently,

the drivers have been submitted for possible inclusion in upcoming releases of

110 5.2. Future Work

the Player/Stage distribution, and furthermore published on the Wiki accompany-

ing the workings of this project.

In conclusion, this project has proposed a new behavioural controlling algo-

rithm targeting the preliminary steps of human-robot encounters, entailing a

number of significant contributions bringing the Human Robot Interaction re-

search one step further towards a fully autonomous and human-aware robot.

5.2 Future Work

The real-world experiments conducted to verify the functioning of the system,

have all been performed in an enclosed small-scale test environment, where dis-

turbances from e.g. dynamics and lighting are easily controlled. For the system

to robustly function in a real-world scenario, requires some additional work.

Starting from the developed behaviour algorithm, means could advanta-

geously be taken to support avoidance of obstacles while interacting with a per-

son. One possible way to incorporate such capabilities, is to include detected

obstacles in the behaviour grid, thus, applying the same distributional approach

used for the behaviour algorithm.

Moreover, attention could be directed on the capabilities of the Person De-

tector, enabling it to facilitate more advanced human recognition. The Person

Detector could be extended by e.g. incorporating more advanced sensor fusion

capabilities to unite the camera and range finder inputs, obtaining an increased

degree of person detector certainty and precision. Also, completely different per-

son detection methodologies could be considered, involving e.g. leg detection

using the range finder, or facial recognition using the camera.

The documented effect of the developed CBR solution, favours that learning

capabilities should indeed be part of future development on the system. Thus,

further improvements could reside in incorporating currently omitted features, in

order to provide the robot with additional possibilities for differentiating between

all experienced encounters.

As for the Robotino® platform, this project has focused on distributing the sys-

tem solution, such that debugging and system monitoring have been performed

more easily on a regular PC. However, such a distributed system requires com-

http://www.control.aau.dk/~tb/wiki

Chapter 5. Closure 111

municating entities to be connected, introducing a severe restriction on robot mo-

bility and automaticity. Thus, future development could possibly be concerned

on manipulating and redesigning the current divided structure, such that it ap-

plies for sole implementation on the robot.

Finally, the communicative skills of the robot could be considered for improve-

ment, by e.g. incorporating a display on the robot. Work is already being done

inside SAC, to develop a robot display mimicking the likes of a human head, but

other improvements such as introduction of speech capabilities, would involve

vast possibilities for future experiments and modes of application.

Acronyms

API Application Programming Interface

AMCL Adaptive Monte Carlo Localization

CBR Case-Based Reasoning

EKF Extended Kalman Filter

FIFO First In First Out

FOV Field Of View

GUI Graphical User Interface

HRI Human Robot Interaction

POD Polar Obstacle Density

SAC Section of Automation and Control

SLAM Simultaneous Localization And Mapping

STL Standard Library Template

UML Unified Modelling Language

VFH+ Vector Field Histogram+

Bibliography

A. Aamodt and E. Plaza.

Case-based reasoning - foundational issues, methodological variations, and

system approaches, 1994.

http://www.iiia.csic.es/People/enric/AICom.html.

Boost.

Boost C++ libraries, 2007.

URL http://www.boost.org.

12.05.2007.

J. Borenstein and Y. Koren.

Vector field histogram - fast obstacle avoidance for mobile robots.

IEEE Journal of Robotics and Automation Vol 7, No 3, June 1991, pp. 278-288, 1991.

C. L. Breazeal.

Designing Sociable Robots.

MIT Press, 2002.

ISBN 0-262-52431-7.

J. Bruce.

Cmvision, 2006.

http://www.cs.cmu.edu/˜jbruce/cmvision/.

H. Bruyninckx.

Open robot control software, 2006.

http://www.orocos.org/.

W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,

W. Steiner, and S. Thrun.

Experiences with an interactive museum tour-guide robot.

Artificial Intelligence, 114(1-2):3-55, 1999.

J. T. Butler and A. Agah.

Psychological effects of behavior patterns of a mobile personal robot.

Autonomuos Robots 10, 185-202, 2001, 2001.

http://www.iiia.csic.es/People/enric/AICom.html
http://www.boost.org
http://www.cs.cmu.edu/~jbruce/cmvision/
http://www.orocos.org/

114 Bibliography

CARMEN.

Carmen robot navigation toolkit, 2006.

http://carmen.sourceforge.net/.

T. H. J. Collet, B. A. MacDonald, and B. Gerkey.

Player 2.0: Toward a practical robot programming framework, 2005.

http://www.araa.asn.au/acra/acra2005/papers/collet.pdf.

K. Dautenhahn.

Methodology & themes of human-robot interaction: A growing research field.

International Journal of Advanced Robotic Systems, Vol. 4, No. 1, 2007.

S. J. Delany.

Using case-based reasoning for spam filtering, 2006.

http://www.comp.dit.ie/sjdelany/publications/thesis-final.pdf.

Frauenhofer.

Care-o-bot ii, 2004.

http://www.care-o-bot.de/.

A. Garcı́a-Rojas, F. Vexo, D. Thalmann, A. Raouzaiou, K. Karpouzis, and S. Kol-

lias.

Emotional body expression parameters in virtual human ontology.

1st Int. Workshop on Shapes and Semantics, 2006.

A. Garulli, A. Giannitrapani, A. Rossi, and A. Vicino.

Mobile robot slam for line-based environment representation.

Proceedings of the 44th IEEE Conference on Decision and Control, 2005.

E. T. Hall, R. L. Birdwhistell, B. Bock, P. Bohannan, A. R. D. Jr., M. Durbin, M. S.

Edmonson, J. L. Fischer, D. Hymes, S. T. Kimball, W. L. Barre, S. J. F. Lynch,

J. E. McClellan, D. S. Marshall, G. B. Milner, H. B. Sarles, G. L. Trager, and A. P.

Vayda.

Proxemics.

Current Anthropology, Vol. 9, No. 2/3. (Apr. - Jun., 1968), pp. 83-108., 1968.

HONDA.

Asimo - the honda humanoid robot asimo, 2006.

http://carmen.sourceforge.net/
http://www.araa.asn.au/acra/acra2005/papers/collet.pdf
http://www.comp.dit.ie/sjdelany/publications/thesis-final.pdf
http://www.care-o-bot.de/

Bibliography 115

http://world.honda.com/ASIMO/.

H. Huettenrauch, K. S. Eklundh, A. Green, and E. A. Topp.

Investigating spatial relationships in human-robot interaction.

Cogniron, 2006.

Z. Huiliang and H. S. Ying.

Dynamic map for obstacle avoidance.

Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE, Vol 2, pp. 1152-

1157, 2003.

E. Isaacs and A. Walendowski.

Designing from both sides of the screen.

SAMS - New Riders, 2001.

ISBN 0-672-32151-3.

M. Kleinehagenbrock, J. Fritsch, and G. Sagerer.

Supporting advanced interaction capabilities on a mobile robot with a flexible

control system.

Intelligent Robots and Systems, 2004.

http://ieeexplore.ieee.org/iel5/9577/30278/01389982.pdf.

K. L. Koay, K. Dautenhahn, S. N. Woods, and M. L. Walters.

Empirical results from using a comfort level device in human-robot interaction

studies.

HRI’06, March 2-4, 2006, 2006.

J. Kolodner.

Case-Based Reasoning.

Morgan Kaufmann, 1993.

ISBN 1-55860-237-2.

MARIE.

Mobile and autonomous robotics integration environment, 2006.

http://marie.sourceforge.net/.

J. S. Mathiasen, M. . Halse, and R. A. L. Sørensen.

A framework for robot navigation with case based reasoning, 2006.

http://world.honda.com/ASIMO/
http://ieeexplore.ieee.org/iel5/9577/30278/01389982.pdf
http://marie.sourceforge.net/

116 Bibliography

Orca.

Orca: Components for robotics, 2006.

http://orca-robotics.sourceforge.net/.

PlayerProject.

Player - user / reference manual, 2006.

http://playerstage.sourceforge.net/doc/Player-2.0.0/player/.

PYRO.

Python robotics, 2006.

http://emergent.brynmawr.edu/˜dblank/pyro/.

E. A. Sisbot, R. Alami, T. Simeon, K. Dautenhahn, M. Walters, and S. Woods.

Navigation in the presence of humans.

IEEE-RAS International Conference on Humanoid Robots Humanoids2005 December

5-7, 2005 Tsukuba Japan, 2005.

E. A. Sisbot, A. Clodic, L. F. Marin, M. Fontmarty, L. Bréthes, and R. Alami.

Implementing a human-aware robot system.

IEEE International Symposium on Robot and Human Interactive Communication

2006 (RO-MAN 06), Hatfield, U.K., 2006.

G. Strang and K. Borre.

Linear Algebra, Geodesy, and GPS.

Wellesley-Cambridge Press, 1997.

ISBN 0-9614088-6-3.

Tangentsoft.

MySQL++, 2007.

http://tangentsoft.net/mysql++/.

T. The Danish Ministry of Science and Innovation.

Technology foresight on cognition and robotics, 2006.

http://teknologiskfremsyn.dk/download/195.pdf.

S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics.

MIT Press, 2005.

http://orca-robotics.sourceforge.net/
http://playerstage.sourceforge.net/doc/Player-2.0.0/player/
http://emergent.brynmawr.edu/~dblank/pyro/
http://tangentsoft.net/mysql++/
http://teknologiskfremsyn.dk/download/195.pdf

Bibliography 117

ISBN 0-262-20162-3.

I. Ulrich and J. Borenstein.

Vfh+: Reliable obstacle avoidance for fast mobile robots.

Proceedings of the 1998 IEEE International Conference on Robotics and Automation,

1998.

M. L. Walters, K. Dautenhahn, K. L. Koay, C. Kaouri, R. t. Beokhorst, C. Nehaniv,

I. Werry, and D. Lee.

Close encounters: Spatial distances between people and a robot of mechanistic

appearance.

Cogniron, 2005.

APPENDIX A

Framework comparison

SAC has a desire of making the software developed through this project reusable

for other robotics researchers using different types of robots. Furthermore, this

also has the advantage that software developed for other projects can be reused

during this project. For this reusabilty to be possible, it is necessary to base the

developed software on some platform which is available within the research com-

munity. A number of such platforms exist each having different features. The

requirements for the software platform can now be specified as listed below:

• Open Source software.
• Facilitate the development of an interface to the Robotino® sensors and ac-

tuators.
• Used within the robotics research community.
• Allow for the low level software such as sensor drivers to be written in C++

as this is the language used for the software delivered with the Robotino®.
• Provide possibility for the low level software and control software to run on

separate machines and communicate via e.g. WLAN. This is due to a desire

of monitoring the progress of the control software at runtime. Robotino®

itself does not provide means for this.
• Must contain a simulator for testing the control software without using the

robot. Using the robot for intermediate testing might result in hardware

damage due to bugs or shortcomings in the control software.
• Must be relatively simple to get familiarized with since this software plat-

form is not the primary focus of the project.
• Must be able to run on a Linux platform as this is installed on the Robotino®.

The most widely used platforms have been reviewed and the primary features

are listed in Table A.1.

At the time of writing, none of the mentioned platforms support the Robotino®.

Furthermore, only some of them conform to the requirements listed above. Car-

men [CARMEN, 2006], Orca [Orca, 2006], and Pyro [PYRO, 2006] are developed

for specific robots, and apparently the addition of another hardware platform is

not provided for. Turning to Orocos, the prime focus of this software is industrial

Appendix A. Framework comparison 119

Platform Programming language Supports distribution Hardware specific

Carmen C No Yes

Orca C++ No Yes

Orocos C++ No No

Pyro Python No Yes

Marie C++ Yes No

Player C/C++/Java Yes No

TABLE A.1: The primary features of the reviewed software platforms.

robots, hence no software is at present available for mobile robots. Moreover, ac-

cording to Orocos developers: “The code and documentation are divided over many

libraries and directories. This can slow down new users in getting a grip of the whole

project, or finding the solutions they are looking for” [Bruyninckx, 2006]. Marie can

be “used for building robotics software systems by integrating previously-existing and

new software components” [MARIE, 2006]. This implies, that using Marie requires

the use of at least one other software platform such as Carmen or Player. Hence,

Marie is not a reasonable choice for this project. In contrast, Player complies with

the requirements listed above and is thus chosen for software platform for this

project.

APPENDIX B

RobotinoCom API

The Robotino® comes bundled with a C++ API for accessing the robot’s hardware.

These access functions are listed below along with a short description of what the

function does.

void setVelocity(unsigned int motor, float rpm)

Sets the velocity of motor to rpm. Motors are counted starting from 0. This over-

rides any previous set/addVelocity calls for the given motor.

void setVelocity(double vx, double vy, double omega)

Sets the robot’s velocity. vx is the velocity in x direction [mm
s], vy is the velocity in

y direction [mm
s], omega is the angular velocity [◦

s].

float actualVelocity(unsigned int motor)

Returns the actualVelocity of motor received by the last StatusMessage. If no

StatusMessage has been received, or if there is no operational connection to the

Robotino®, it returns 0.

void setKp(unsigned int motor, float value)

Sets the PID controllers proportional constant of motor to value. Motors are

counted starting from 0.

void setKd(unsigned int motor, float value)

Sets the PID controllers differential constant of motor to value. Motors are

counted starting from 0.

void setKi(unsigned int motor, float value)

Sets the PID controllers integral constant of motor to value. Motors are counted

starting from 0.

bool bumper()const

Returns true if the bumper of the Robotino® is pressed otherwise false.

float distance(unsigned int n)const

Returns the reading of distance sensor n. Counting of the sensors starts from 1.

Appendix B. RobotinoCom API 121

void setDigitalOutput(std::string name, bool value)

Sets the digital output referenced by name to low, if value is false. If value is true

the output goes high.

void setDigitalOutput(unsigned int n, bool value)

Sets the digital output n to low, if value is false. If value is true the output goes

high. The output channels are counted starting from 0.

bool digitalInput(std::string name)const

Returns true if the digital input referenced by name is high, and false if low. In

cases where the name is not found, digitalInput() returns false.

float voltageBatt1plus2()const

Returns the voltage of the two batteries.

APPENDIX C

Interface specifications

Interface Between Description

blobfinder:0 Blob finder and Person Detector Used for transferring extracted blob information of a
a certain colour to the Person Detector which utilizes
the blobs when detecting a person.

camera:0 Robotino® and Blob finder Used for transferring images from the Robotino® webcam to
the Blob finder.

laser:0 Range finder and Person Detector Used for transferring laser readings which are utilized
by the Person Detector for estimating the distance to

a person.
laser:0 Range finder and Pilot Used for transferring laser readings to the Pilot,

utilizing the readings for detecting and avoiding

obstacles not present on the map.
laser:0 Range finder and Localizer Used for transferring laser readings which are utilized

by the Localizer to estimate the pose of the robot.

localize:0 Localizer and Controller Used for transferring pose estimates and likelihoods
to the Controller.

map:0 Map and Localizer Used by the Localizer to estimate the correct pose of the
robot, by matching detected environment features with the
provided map.

opaque:0 Controller and Behaviour Manager Customized interface, further specified in Section 3.3.1.
opaque:1 Controller and Velocity Manager Customized interface, further specified in Section 3.3.2.

planner:0 Controller and Navigator Transfers targets from Controller to Navigator.

pos2d:0 Robotino® and Velocity Manager Transfers velocity commands from Velocity Manager to the
Robotino® . Furthermore, position data intended for above
drivers is transferred from the Robotino® to the
Velocity Manager.

pos2d:0 Robotino® and Localizer Odometry data is transferred from the Robotino® to the
Localizer, where it is used for pose estimation.

pos2d:1 Behaviour Manager and Pilot Velocity commands are passed to the Robot through
the Pilot. Furthermore, pose information is transferred
from the Pilot to the Behaviour Manager.

pos2d:2 Localizer and Controller The most likely pose of the robot is transferred to the
Controller.

pos2d:2 Localizer and Person Detector The most likely pose of the robot is transferred to the
Person Detector, where it is used for transforming a
detected person’s pose from robot coordinates to world
coordinates.

pos2d:3 Behaviour Manager and Navigator A way-point is transferred from the Navigator to the
Behaviour Manager. Furthermore, pose information is
transferred from the Behaviour Manager to the Navigator.

pos2d:4 Pilot and Velocity Manager Velocity commands are transferred from the Pilot to the
Velocity Manager where it, if applicable, is limited to
the maximal allowed velocity.

pos2d:5 Person Detector and Controller The position of a detected person is transferred from the
Person Detector to the Controller in robot frame coordinates.

pos2d:6 Person Detector and Controller The position of a detected person is transferred from the
Person Detector to the Controller in robot frame coordinates.

TABLE C.1: Description of the interfaces used within the overall system

solution as depicted in Figure 3.1 on page 45.

	1 Introduction
	1.1 Robotic context
	1.2 Project objectives
	1.2.1 Experimental set-up

	1.3 Contributions
	1.4 Outline

	2 Analysis
	2.1 Robot platform
	2.1.1 FESTO Robotino®
	2.1.2 Range sensors

	2.2 Software framework
	2.2.1 Player robot server
	2.2.2 Stage simulator

	2.3 Required robot functionalities
	2.3.1 Localizer
	2.3.2 Pilot
	2.3.3 Navigator
	2.3.4 Person Detector
	2.3.5 Person Evaluator and Trainee
	2.3.6 Communicator
	2.3.7 Behaviour

	2.4 Controller
	2.4.1 Controller objectives

	2.5 Software structure

	3 Design and Implementation
	3.1 Player driver architecture
	3.2 Robot interface
	3.2.1 RTLinux module
	3.2.2 Robot driver for Player
	3.2.3 URG driver for Player

	3.3 Robot control
	3.3.1 Behaviour Manager
	3.3.2 Velocity Manager

	3.4 Human-Robot Interaction
	3.4.1 Person Detector
	3.4.2 Person Evaluator
	3.4.3 Trainee

	3.5 Controller
	3.5.1 Controller development
	3.5.2 Player client
	3.5.3 State supervision
	3.5.4 Controller structure

	4 Experiments and Results
	4.1 Data acquisition
	4.1.1 Person test subject

	4.2 Before encounter
	4.2.1 Results from simulation
	4.2.2 Results from real-world test

	4.3 During encounter
	4.3.1 Human-aware navigation
	4.3.2 Learning

	4.4 After encounter
	4.4.1 Results from simulation
	4.4.2 Results from real-world test

	5 Closure
	5.1 Conclusion
	5.2 Future Work

	Acronyms
	Bibliography
	A Framework comparison
	B RobotinoCom API
	C Interface specifications

